Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(10): 101762, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37701752

RESUMO

Garcinia livingstonei is a traditional herbal medicine that showed beneficial health effects and bioactivities. Four compounds have been isolated from the plant leaves and were elucidated as lupeol, betulin, podocarpusflavone A, and amentoflavone. The inhibitory activities of G. livingstonei extract and isolated metabolites against fatty acid synthase (FAS), α-glucosidase, and xanthine oxidase (XO) were investigated in vitro. The affinity of the compounds toward the studied enzymes was investigated in silico. The plant extract inhibited FAS, α-glucosidase, and XO with IC50 values of 26.34, 67.88, and 33.05 µg/mL, respectively. Among the isolated metabolites, betulin exhibited the most inhibitory activity against α-glucosidase and XO with IC50 values of 38.96 and 30.94 µg/mL, respectively. Podocarpusflavone A and betulin were the most potent inhibitors of FAS with IC50 values of 24.08 and 27.96 µg/mL, respectively. Computational studies corroborated these results highlighting the interactions between metabolites and the enzymes. In conclusion, G. livingstonei and its constituents possess the potential to modulate enzymes involved in metabolism and oxidative stress.

2.
Int Immunopharmacol ; 124(Pt A): 110833, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634447

RESUMO

Pancreatitis is a serious effect of the heavy metal cadmium (Cd) and inflammation and oxidative stress (OS) are implicated in Cd-induced pancreatic injury. This study evaluated the effect of the melatonin receptor agonist agomelatine (AGM) on Cd-induced acute pancreatitis (AP), pointing to its modulatory effect on inflammation, OS, and Nrf2/HO-1 pathway. Rats were supplemented with AGM orally for 14 days and a single injection of cadmium chloride (CdCl2) on day 7. Cd increased serum amylase and lipase and caused pancreatic endocrine and exocrine tissue injury. Malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) were elevated, nuclear factor (NF)-kB p65, inducible NO synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF)-α and CD40 were upregulated, and antioxidants were decreased in the pancreas of Cd-administered rats. AGM ameliorated serum amylase and lipase and pancreatic OS, NF-kB p65, CD40, pro-inflammatory mediators and caspase-3, prevented tissue injury and enhanced antioxidants. AGM downregulated Keap1 and enhanced Nrf2 and HO-1 in the pancreas of Cd-administered rats. In silico findings revealed the binding affinity of AGM with Keap1, HO-1, CD40L and caspase-3. In conclusion, AGM protected against AP induced by Cd by preventing inflammation, OS and apoptosis and modulating Nrf2/HO-1 pathway.

3.
Front Pharmacol ; 14: 1204641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397470

RESUMO

Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. Plants are valuable sources of therapeutic agents for the management of T2D. Euphorbia peplus has been widely used as a traditional medicine for the treatment of various diseases, but its beneficial role in T2D has not been fully explored. Methods: The anti-diabetic efficacy of E. peplus extract (EPE) was studied using rats with T2D induced by high-fat diet (HFD) and streptozotocin (STZ). The diabetic rats received 100, 200, and 400 mg/kg EPE for 4 weeks. Results: Phytochemical fractionation of the aerial parts of E. peplus led to the isolation of seven known flavonoids. Rats with T2D exhibited IR, impaired glucose tolerance, decreased liver hexokinase and glycogen, and upregulated glycogen phosphorylase, glucose-6-phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase). Treatment with 100, 200, and 400 mg/kg EPE for 4 weeks ameliorated hyperglycemia, IR, liver glycogen, and the activities of carbohydrate-metabolizing enzymes. EPE attenuated dyslipidemia, serum transaminases, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and liver lipid accumulation, nuclear factor (NF)-κB p65, and lipid peroxidation, nitric oxide and enhanced antioxidants. All EPE doses upregulated serum adiponectin and liver peroxisome proliferator-activated receptor γ (PPARγ) in HFD/STZ-induced rats. The isolated flavonoids showed in silico binding affinity toward hexokinase, NF-κB, and PPARγ. Conclusion: E. peplus is rich in flavonoids, and its extract ameliorated IR, hyperglycemia, dyslipidemia, inflammation and redox imbalance, and upregulated adiponectin and PPARγ in rats with T2D.

4.
Comb Chem High Throughput Screen ; 26(12): 2124-2148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650620

RESUMO

Toll-like receptors (TLRs) control both innate and adaptive immunity with a wide expression on renal epithelial cells and leukocytes. Activation of TLRs results in the production of cytokines, chemokines and interferons along with activation of the transcription factor NF-κB, resulting in inflammatory perturbations. TLR4 signaling pathway is the most extensively studied of TLRs. TLR4 is expressed on renal microvascular endothelial and tubular epithelial cells. So, targeting TLR4 modulation could be a therapeutic approach to attenuate kidney diseases that are underlined by inflammatory cascade. Medicinal plants with anti-inflammatory activities display valuable effects and are employed as alternative sources to alleviate renal disease linked with inflammation. Flavonoids and other phytochemicals derived from traditional medicines possess promising pharmacological activities owing to their relatively cheap and high safety profile. Our review focuses on the potent anti-inflammatory activities of twenty phytochemicals to verify if their potential promising renoprotective effects are related to suppression of TLR4 signaling in different renal diseases, including sepsis-induced acute kidney injury, renal fibrosis, chemotherapy-induced nephrotoxicity, diabetic nephropathy and renal ischemia/reperfusion injury. Additionally, molecular docking simulations were employed to explore the potential binding affinity of these phytochemicals to TLR4 as a strategy to attenuate renal diseases associated with activated TLR4 signaling.


Assuntos
Nefropatias Diabéticas , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Simulação de Acoplamento Molecular , Rim/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Environ Sci Pollut Res Int ; 29(42): 63520-63532, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461413

RESUMO

Hyperuricemia represents a risk factor for the progression of chronic kidney disease. Oxidative stress and inflammation are implicated in the mechanisms underlying hyperuricemia-mediated kidney injury. Monolluma quadrangula possesses several beneficial effects; however, its effect on hyperuricemia has not been investigated. This study evaluated the renoprotective and xanthine oxidase (XO) inhibitory activity of M. quadrangula in hyperuricemic rats. Phytochemical investigation revealed the presence of six known flavonoid isolated for the first time from this species. The rats received M. quadrangula extract (MQE) and potassium oxonate (PO) for 7 days. In vitro assays showed the radical scavenging and XO inhibitory activities of MQE, and in silico molecular docking revealed the inhibitory activity of the isolated flavonoids towards XO. Hyperuricemic rats showed elevated serum uric acid, creatinine, urea, and XO activity, and renal pro-inflammatory cytokines, MDA and NO, and decreased GSH, SOD, and catalase. MQE ameliorated serum uric acid, urea, creatinine, and XO activity, and renal pro-inflammatory cytokines. In addition, MQE attenuated renal oxidative stress, enhanced antioxidants, downregulated URAT-1, and GLUT-9 and upregulated OAT-1 in PO-induced rats. In conclusion, M. quadrangula attenuated hyperuricemia and kidney impairment by suppressing XO activity, oxidative stress and inflammation, and modulating urate transporters.


Assuntos
Hiperuricemia , Animais , Catalase , Creatinina , Citocinas , Flavonoides/toxicidade , Hiperuricemia/induzido quimicamente , Inflamação , Rim , Simulação de Acoplamento Molecular , Ácido Oxônico , Extratos Vegetais/farmacologia , Ratos , Superóxido Dismutase , Ureia/farmacologia , Ácido Úrico , Xantina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA