Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(8): e202300534, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498138

RESUMO

Olive leaf extract is a valuable source of phenolic compounds; primarily, oleuropein (major component) and rutin. This natural olive leaf extract has potential use as a therapeutic agent for cancer treatment. However, its clinical application is hindered by poor pharmacokinetics and low stability. To overcome these limitations, this study aimed to enhance the anticancer activity and stability of oleuropein and rutin by loading them into PEGylated Nano-phytosomes. The developed PEGylated Nano-phytosomes exhibited favorable characteristics in terms of size, charge, and stability. Notably, the anticolonic cancer activity of the Pegylated Nano-phytosomes loaded with oleuropein (IC50=0.14 µM) and rutin (IC50=0.44 µM) surpassed that of pure oleuropein and rutin alone. This outcome highlights the advantageous impact of Nano-phytosomes to augment the anticancer potential of oleuropein and rutin. These results present a promising pathway for the future development of oleuropein and rutin Nano-phytosomes as effective options for passive tumor-targeted therapy, given their improved stability and efficacy.


Assuntos
Neoplasias , Olea , Rutina/farmacologia , Antioxidantes , Iridoides/farmacologia , Glucosídeos Iridoides , Polietilenoglicóis , Folhas de Planta , Extratos Vegetais/farmacologia
2.
Food Chem ; 424: 136438, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37244187

RESUMO

Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.


Assuntos
Nanopartículas , Nanotecnologia , Suplementos Nutricionais , Solubilidade , Disponibilidade Biológica , Nanopartículas/química , Sistemas de Liberação de Medicamentos
3.
Nutrients ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501201

RESUMO

BACKGROUND: Nutrients are widely used for treating illnesses in traditional medicine. Ginger has long been used in folk medicine to treat motion sickness and other minor health disorders. Chronic non-healing wounds might elicit an inflammation response and cancerous mutation. Few clinical studies have investigated 6-gingerol's wound-healing activity due to its poor pharmacokinetic properties. However, nanotechnology can deliver 6-gingerol while possibly enhancing these properties. Our study aimed to develop a nanophytosome system loaded with 6-gingerol molecules to investigate the delivery system's influence on wound healing and anti-cancer activities. METHODS: We adopted the thin-film hydration method to synthesize nanophytosomes. We used lipids in a ratio of 70:25:5 for DOPC(dioleoyl-sn-glycero-3-phosphocholine): cholesterol: DSPE/PEG2000, respectively. We loaded the 6-gingerol molecules in a concentration of 1.67 mg/mL and achieved size reduction via the extrusion technique. We determined cytotoxicity using lung, breast, and pancreatic cancer cell lines. We performed gene expression of inflammation markers and cytokines according to international protocols. RESULTS: The synthesized nanophytosome particle sizes were 150.16 ± 1.65, the total charge was -13.36 ± 1.266, and the polydispersity index was 0.060 ± 0.050. Transmission electron microscopy determined the synthesized particles' spherical shape and uniform size. The encapsulation efficiency was 34.54% ± 0.035. Our biological tests showed that 6-gingerol nanophytosomes displayed selective antiproliferative activity, considerable downregulation of inflammatory markers and cytokines, and an enhanced wound-healing process. CONCLUSIONS: Our results confirm the anti-cancer activity of PEGylated nanophytosome 6-gingerol, with superior activity exhibited in accelerating wound healing.


Assuntos
Catecóis , Álcoois Graxos , Álcoois Graxos/farmacologia , Catecóis/farmacocinética , Tamanho da Partícula , Cicatrização
4.
Drug Deliv Transl Res ; 12(12): 2993-2999, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35499716

RESUMO

Several studies have reported the anti-diabetic effect of biologically synthesized gold nanoparticles (AuNPs). This study was designed to investigate the in vivo anti-diabetic activity of AuNPs synthesized using the leaf extract of Dittrichia viscosa in a high-fat diet (HFD)/streptozotocin (STZ)-induced diabetes in rats. AuNPs were synthesized using the leaf extract of D. viscosa, and the synthesized AuNPs were characterized by UV-visible spectrophotometer, dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). To study the anti-hyperglycemic effect of the AuNPs formed using D. viscosa extract, adult male Sprague-Dawley rats were divided into three groups (6-8 rats/group) as follows: control group, a diabetic group without treatment, and a diabetic group treated intraperitoneally with a daily injection of AuNPs at a dose of 2.5 mg/kg for 21 days. Diabetes was induced by maintaining the rats on HFD for 2 weeks, followed by a single intraperitoneal injection of 45 mg/kg of STZ. Serum and liver samples were collected at the end of the treatment period and used to measure glucose levels and hepatic gene expression and activity of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in the liver gluconeogenic pathway. The AuNPs formed using D. viscosa extract were mainly spherical with a size range between 20 and 50 nm with good stability and dispersity, as indicated by the zeta potential and DLS measurements. Treatment with AuNP significantly lowered the blood glucose level, the gene expression, and the activity of hepatic PEPCK in comparison to the diabetic untreated group (P < 0.05). This study suggests that AuNPs synthesized using D. viscosa leaf extract can alleviate hyperglycemia in HFD/STZ-induced diabetes in rats, which could be through the reduction of hepatic gluconeogenesis by inhibiting the expression and activity of the hepatic PEPCK gene. Schematic illustration of the biosynthesis of AuNPs showing their distinctive morphology under the EM. The generated particles were injected into animals and serum glucose levels were reported in addition to the PEPCK expression and activity.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas Metálicas , Masculino , Ratos , Animais , Ouro/farmacologia , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fígado , Extratos Vegetais/uso terapêutico , Glucose , Glicemia
5.
Front Mol Biosci ; 9: 865833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480890

RESUMO

Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.

6.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335190

RESUMO

Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50-60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.


Assuntos
Neoplasias da Mama , Nanopartículas , Óxido de Zinco , Neoplasias da Mama/tratamento farmacológico , Feminino , Química Verde/métodos , Humanos , Nanopartículas/química , Extratos Vegetais/química , Difração de Raios X , Óxido de Zinco/química
7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884745

RESUMO

Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5'-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411-ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411-ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.


Assuntos
Aptâmeros de Nucleotídeos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/sangue , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Técnicas In Vitro , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/sangue , Oligodesoxirribonucleotídeos/genética , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Nucleolina
8.
Nutrients ; 13(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34836251

RESUMO

BACKGROUND: Medicinal plants have proven their value as a source of molecules with therapeutic potential, and recent studies have shown that capsaicin has profound anticancer effects in several types of human cancers. However, its clinical use is handicapped due to its poor pharmacokinetics. This study aims to enhance capsaicin's pharmacokinetic properties by loading the molecule into nanoliposomes model and testing its anticancer activity. METHODS: Nanoliposomes were prepared using the thin-film method, and characteristics were examined followed by qualitative and quantitative analyses of encapsulation efficiency and drug loading using HPLC at different lipid/capsaicin ratios. Cell viability assay (MTT) was used to determine IC50. RESULTS: Capsaicin-loaded nanoliposomes showed optimum characteristics of morphology, particle size, zeta potential, and stability. In vitro anticancer activity of capsaicin and capsaicin-loaded nanoliposomes were compared against MCF7, MDA-MB-231, K562, PANC1, and A375 cell lines. Capsaicin-loaded nanoliposomes showed significant improvement in anticancer activity against cancers cell lines studied (p < 0.001), with increased selectivity against cancer cells compared to capsaicin. CONCLUSION: The encapsulated capsaicin nanoliposomes produced an improvement in pharmacokinetics properties, enhancing the anticancer activity and selectivity compared with capsaicin. This model seems to offer a potential for developing capsaicin formulations for the prevention and treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Capsaicina/farmacologia , Lipossomos/farmacologia , Nanopartículas/química , Antineoplásicos/química , Capsaicina/química , Capsicum/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Lipossomos/química , Células MCF-7 , Tamanho da Partícula
9.
Z Naturforsch C J Biosci ; 76(5-6): 243-250, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33770827

RESUMO

Column chromatography (CC) analysis of methanol and butanol extracts of the aerial parts of Calortopis procera as well as the methanol extract of its latex, led to the isolation of 8 cardenolides, of which the structures were elucidated by NMR and HRESIMS spectroscopy. They also revealed several triterpenes and flavonoid glycoside. Based on the antiproliferative activity reported for cardenolides, the activity of calotropin and calotoxin was tested against two common cancer cell lines, human triple-negative breast cancer cell line (MDA-MB-231) and human lung adenocarcinoma cell line (A549). The high toxicity of the latex also encouraged performing the same test on the same cancer cell lines. The anti-proliferative activity of calotropin and calotoxin was compared to the methanol extract and the wax of the latex. The results showed that calotropin and calotoxin have significant cytotoxicity against MDA-MB-231 and A549 cell lines ranging from 0.046 to 0.072 µM compared to the methanol extract and the wax of its latex ranging from 0.47 to 58.41 µM. Moreover, the results showed lower toxicity of all treatments to the human skin fibroblasts compared to the toxicity to both MDA-MB-231 and A549 cancer cells lines except the higher toxicity of Methanolic extracts of C. procera latex to the MDA-MB-231 cells. In conclusion, C. procera is a medicinal plant with a wide spectrum of cardinolides including calotropin and calotoxin, which are promising agents for targeted cancer phytotherapy.


Assuntos
Antineoplásicos Fitogênicos/química , Apocynaceae/química , Cardenolídeos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apocynaceae/metabolismo , Cardenolídeos/isolamento & purificação , Cardenolídeos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA