Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 13(3): 1541-1553, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35249268

RESUMO

BACKGROUND: Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS: We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS: We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS: Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.


Assuntos
Sobrecarga de Ferro , Distrofia Muscular de Duchenne , Animais , Deferiprona , Distrofina/genética , Ferritinas , Fibrose , Heme/metabolismo , Ferro/metabolismo , Quelantes de Ferro , Sobrecarga de Ferro/etiologia , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Espécies Reativas de Oxigênio/metabolismo
2.
Sci Rep ; 9(1): 12982, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506484

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.


Assuntos
Modelos Animais de Doenças , Glicinérgicos/administração & dosagem , Glicina/administração & dosagem , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisolona/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA