Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 109(10): 1840-1848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797182

RESUMO

Microbeads consisting of pullulan and dextran supplemented with hydroxyapatite have recently been developed for bone tissue engineering applications. Here, we evaluate the bone formation in two different preclinical models after injection of microbeads reconstituted with either saline buffer or autologous blood. Addition of saline solution or autologous blood to dried microbeads packaged into syringes allowed an easy injection. In the first rat bone defect model performed in the femoral condyle, microcomputed tomography performed after 30 and 60 days revealed an important mineralization process occurring around and within the core of the microbeads in both conditions. Bone volume/total volume measurements revealed no significant differences between the saline solution and the autologous blood groups. Histologically, osteoid tissue was evidenced around and in contact of the microbeads in both conditions. Using the sinus lift model performed in sheep, cone beam computed tomography revealed an important mineralization inside the sinus cavity for both groups after 3 months of implantation. Representative Masson trichrome staining images showed that bone formation occurs at the periphery and inside the microbeads in both conditions. Quantitative evaluation of the new bone formation displayed no significant differences between groups. In conclusion, reconstitution of microbeads with autologous blood did not enhance the regenerative capacity of these microbeads compared to the saline buffer group. This study is of particular interest for clinical applications in oral and maxillofacial surgery.


Assuntos
Sangue/metabolismo , Regeneração Óssea/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Durapatita/farmacologia , Polímeros/farmacologia , Solução Salina/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Implantes Experimentais , Microesferas , Ratos , Ovinos , Transplante Autólogo , Microtomografia por Raio-X
3.
Tissue Eng Part A ; 24(9-10): 703-710, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28851250

RESUMO

INTRODUCTION: Standard care for malignant tumors arising next to a bone structure is surgical removal with safety margins, followed by external beam radiotherapy (EBRT). Complete tumor removal can result in large bone defects. A two-step bone reconstruction technique using the induced membrane (IM) technique has proven its efficacy to bridge gap nonunion. During the first step, a spacer is placed in the bone gap. The spacer then is removed and the IM around it is filled with autologous cancellous bone graft. However, the feasibility of this technique with the addition of adjuvant EBRT between the two reconstruction steps has not yet been studied. Polymethyl methacrylate (PMMA) used to be the standard spacer material for the first step. Silicone spacers could replace them owing to their good behavior when submitted to EBRT and their easier removal from the surgical site during the second step. The aim of this study was to evaluate the influence of EBRT on the histological and biochemical properties of IM induced using PMMA or silicone as spacer. MATERIALS AND METHODS: The analyses were performed on PMMA- or silicone-IM with and without EBRT in a 6-mm bilateral femoral defect in 32 rats. Thickness and vessel content were measured in both groups. Bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) content in lysates of the crushed membranes were measured by enzyme immunoassay. Finally, alkaline phosphatase activity was analyzed in human bone marrow stromal cell cultures in contact with the same lysates. RESULTS: EBRT did not change the histological structure of the cellular internal layer or the fibrous outer layer. The nature of the spacer only influenced IM thickness, PMMA-IM with external radiotherapy being significantly thicker. EBRT decreased the vascular density of IM but was less effective on VEGF/BMP2 production. In vitro, IM could have an osteoinductive potential on human bone marrow stem cells. CONCLUSION: EBRT did not modify the histological properties of IMs but decreased their vascular density. VEGF and BMP2 production within IMs was not affected by EBRT. Silicone spacers are able to induce membranes with similar histological characteristics to PMMA-IM.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Polimetil Metacrilato/química , Silicones/química , Animais , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Cuidados Pós-Operatórios , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Acta Biomater ; 54: 377-385, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242456

RESUMO

Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. STATEMENT OF SIGNIFICANCE: In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Células Progenitoras Endoteliais , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Cálcio/química , Cálcio/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Xenoenxertos , Humanos , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Wistar
5.
Acta Biomater ; 29: 435-445, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26441126

RESUMO

In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost. As such, more cost effective alternatives are awaited. Here, we demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate ormoglass (CaP) particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. We show that the current approach elicited the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial. As both PLA and CaP are currently accepted for clinical application these off-the-shelf novel membranes have great potential for guided bone regeneration applications. STATEMENT OF SIGNIFICANCE: In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, our group has found that calcium ions released by the degradation of calcium phosphate ormoglasses (CaP) are effective angiogenic promoters. Based on this, in this work we successfully produced hybrid fibrous mats with different contents of CaP nanoparticles and thus with different calcium ion release rates, using an ormoglass - poly(lactic acid) blend approach. We show that these matrices, upon implantation in a subcutaneous site, could elicit the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial, in a CaP dose dependent manner. This off-the-shelf cost effective approach presents great potential to translate to the clinics.


Assuntos
Fosfatos de Cálcio , Cálcio , Ácido Láctico , Membranas Artificiais , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros , Adulto , Animais , Cálcio/química , Cálcio/farmacocinética , Cálcio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Masculino , Camundongos , Poliésteres , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia
6.
PLoS One ; 9(10): e110251, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330002

RESUMO

The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone repair. Here, we propose to evaluate the cellular penetration and bone formation of new macroporous beads based on pullulan/dextran that has been supplemented with nanocrystalline hydroxyapatite in a rat model. Cross-linked beads of 300-500 µm diameters were used in a lateral femoral condyle defect and analyzed by magnetic resonance imaging, micro-computed tomography, and histology in comparison to the empty defects 15, 30, and 70 days after implantation. Inflammation was absent for both conditions. For empty defects, cellularisation and mineralization started from the periphery of the defect. For the defects containing beads, cellular structures filling out the spaces between the scaffolds with increasing interconnectivity and trabecular-like organization were observed over time. The analysis of calcified sections showed increased mineralization over time for both conditions, but was more pronounced for the samples containing beads. Bone Mineral Density and Bone Mineral Content were both significantly higher at day 70 for the beads in comparison to empty defects as well as compared with earlier time points. Analysis of newly formed tissue around the beads showed an increase of osteoid tissue, measured as percentage of the defect surface. This study suggests that the use of beads for the repair of small size defects in bone may be expanded on to meet the clinical need for a ready-to-use fill-up material that can favor bone formation and mineralization, as well as promote vessel ingrowth into the defect site.


Assuntos
Materiais Biocompatíveis/farmacologia , Dextranos/química , Durapatita/química , Fêmur/fisiologia , Glucanos/química , Microesferas , Nanopartículas , Animais , Materiais Biocompatíveis/química , Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Masculino , Porosidade , Radiografia , Ratos , Engenharia Tecidual , Alicerces Teciduais
7.
Biomaterials ; 34(12): 2947-59, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23375393

RESUMO

Research in bone tissue engineering is focused on the development of alternatives to allogenic and autologous bone grafts that can stimulate bone healing. Here, we present scaffolds composed of the natural hydrophilic polysaccharides pullulan and dextran, supplemented or not with nanocrystalline hydroxyapatite particles (nHA). In vitro studies revealed that these matrices induced the formation of multicellular aggregates and expression of early and late bone specific markers with human bone marrow stromal cells in medium deprived of osteoinductive factors. In absence of any seeded cells, heterotopic implantation in mice and goat, revealed that only the composite macroporous scaffold (Matrix + nHA) (i) retained subcutaneously local growth factors, including Bone Morphogenetic Protein 2 (BMP2) and VEGF165, (ii) induced the deposition of a biological apatite layer, (iii) favored the formation of a dense mineralized tissue subcutaneously in mice, as well osteoid tissue after intramuscular implantation in goat. The composite scaffold was thereafter implanted in orthotopic preclinical models of critical size defects, in small and large animals, in three different bony sites, i.e. the femoral condyle of rat, a transversal mandibular defect and a tibial osteotomy in goat. The Matrix + nHA induced a highly mineralized tissue in the three models whatever the site of implantation, as well as osteoid tissue and bone tissue regeneration in direct contact to the matrix. We therefore propose this composite matrix as a material for stimulating bone cell differentiation of host mesenchymal stem cells and bone formation for orthopedic and maxillofacial surgical applications.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Dextranos/química , Durapatita/química , Glucanos/química , Polissacarídeos/química , Engenharia Tecidual , Sequência de Bases , Células Cultivadas , Primers do DNA , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real , Difração de Raios X
8.
J Biomed Mater Res B Appl Biomater ; 100(2): 378-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22102621

RESUMO

This study aims to evaluate in vitro the release properties and biological behavior of original compositions of strontium (Sr)-loaded bone mineral cements. Strontium was introduced into vaterite CaCO3 -dicalcium phosphate dihydrate cement via two routes: as SrCO3 in the solid phase (SrS cements), and as SrCl2 dissolved in the liquid phase (SrL cements), leading to different cement compositions after setting. Complementary analytical techniques implemented to thoroughly investigate the release/dissolution mechanism of Sr-loaded cements at pH 7.4 and 37°C during 3 weeks revealed a sustained release of Sr and a centripetal dissolution of the more soluble phase (vaterite) limited by a diffusion process. In all cases, the initial burst of the Ca and Sr release (highest for the SrL cements) that occurred over 48 h did not have a significant effect on the expression of bone markers (alkaline phosphatase, osteocalcin), the levels of which remained overexpressed after 15 days of culture with human osteoprogenitor (HOP) cells. At the same time, proliferation of HOP cells was significantly higher on SrS cements. Interestingly, this study shows that we can optimize the sustained release of Sr(2+) , the cement biodegradation and biological activity by controlling the route of introduction of strontium in the cement paste.


Assuntos
Cimentos Ósseos , Células da Medula Óssea/metabolismo , Teste de Materiais , Células-Tronco/metabolismo , Estrôncio , Cimentos Ósseos/química , Cimentos Ósseos/farmacocinética , Cimentos Ósseos/farmacologia , Células da Medula Óssea/citologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Células-Tronco/citologia , Estrôncio/química , Estrôncio/farmacocinética , Estrôncio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA