Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protoplasma ; 256(4): 1025-1035, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30834984

RESUMO

Sulfur (S) and phosphorus (P) are essential elements for plant growth and physiological functioning. Their deficiency can limit N2 fixation and nodule development in nodulated legumes. The location of S within nodule tissues could provide insights into S metabolism and its little-known relationship with N2 fixation. Determinate and indeterminate nodules were inoculated with specific rhizobia and grown hydroaeroponically under sufficient versus deficient P supplies. Cryogenic and freeze-dried thin sections of nodules at the flowering stage were mapped using synchrotron micro-X-ray fluorescence to determine the S distribution within the nodule tissues with a spatial resolution of 2 or 3 µm. A large accumulation of S was found in the middle cortex for both types of nodules. S was also found in all of the other tissues but with a significantly lower signal. In the middle cortex, P deficiency decreased the S maximum fluorescence intensity by 20% and 25% for the determinate and indeterminate nodules, respectively. In addition, Mg and Cl maps were also collected showing that Mg was mostly localized in the middle and inner cortex, forming a Mg-rich ring consisting of several cell layers for the determinate nodules compared with only one cell layer for the indeterminate nodules. Cl was mainly accumulated in the outer cortex. It is concluded that the accumulation of S in the middle cortex is consistent with its involvement in the ionic equilibrium of the nodule, and in the osmotic variation of the inner cortex cell-size, which would regulate nodule permeability to oxygen.


Assuntos
Nódulos Radiculares de Plantas/metabolismo , Espectrometria por Raios X/métodos , Enxofre/metabolismo , Vigna/metabolismo , Cloretos/metabolismo , Flores/metabolismo , Magnésio/metabolismo , Fixação de Nitrogênio , Fósforo/metabolismo , Síncrotrons
2.
Plant Cell Environ ; 40(2): 190-202, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743400

RESUMO

Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.


Assuntos
Hebeloma/fisiologia , Interações Hospedeiro-Patógeno , Espectroscopia de Ressonância Magnética , Micorrizas/fisiologia , Radioisótopos de Fósforo/metabolismo , Fósforo/metabolismo , Pinus/microbiologia , Polifosfatos/metabolismo , Hifas/metabolismo , Pinus/metabolismo , Zea mays/metabolismo
3.
J Plant Physiol ; 205: 48-56, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27614785

RESUMO

While increased P-hydrolysing acid phosphatases (APase) activity in bean nodules is well documented under phosphorus (P) limitation, gene expression and subcellular localization patterns within the N2-fixing nodule tissues are poorly understood. The aim of this research was to track the enzyme activity along with the intra-nodular localization of fructose-1,6-bisphosphatase (FBPase), and its contribution to P use efficiency (PUE) under symbiotic nitrogen fixation (SNF) in Phaseolus vulgaris. The FBPase transcript were localized in situ using RT-PCR and the protein activity was measured in nodules of two contrasting recombinant inbred lines (RILs) of P. vulgaris, namely RILs 115 (P-efficient) and 147 (P-inefficient), that were grown under sufficient versus deficient P supply. Under P-deficiency, higher FBPase transcript fluorescence was found in the inner cortex as compared to the infected zone of RIL115. In addition, both the specific FBPase and total APase enzyme activities significantly increased in both RILs, but to a more significant extent in RIL115 as compared to RIL147. Furthermore, the increased FBPase activity in nodules of RIL115 positively correlated with higher use efficiency of both the rhizobial symbiosis (23%) and P for SNF (14% calculated as the ratio of N2 fixed per nodule total P content). It is concluded that the abundant tissue-specific localized FBPase transcript along with induced enzymatic activity provides evidence of a specific tolerance mechanism where N2-fixing nodules overexpress under P-deficiency conditions. Such a mechanism would maximise the intra-nodular inorganic P fraction necessary to compensate for large amount of P needed during the SNF process.


Assuntos
Frutose-Bifosfatase/genética , Regulação da Expressão Gênica de Plantas , Phaseolus/enzimologia , Fósforo/metabolismo , Rhizobium/fisiologia , Frutose-Bifosfatase/metabolismo , Fixação de Nitrogênio , Phaseolus/citologia , Phaseolus/genética , Phaseolus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose
4.
Planta ; 239(4): 901-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24407511

RESUMO

Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 µM phytate (C6H18O24P6) or 75 µmol Pi (K2HPO4), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.


Assuntos
6-Fitase/genética , Bacillus subtilis/enzimologia , Phaseolus/microbiologia , Fósforo/metabolismo , Ácido Fítico/metabolismo , 6-Fitase/metabolismo , Bacillus subtilis/genética , Fixação de Nitrogênio , Phaseolus/citologia , Phaseolus/crescimento & desenvolvimento , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Rizosfera , Simbiose
5.
Planta ; 238(2): 317-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23677567

RESUMO

Phosphorus is an essential nutrient for rhizobial symbioses to convert N2 into NH4 usable for N nutrition in legumes and N cycle in ecosystems. This N2 fixation process occurs in nodules with a high energy cost. Phytate is the major storage form of P and accounts for more than 50 % of the total P in seeds of cereals and legumes. The phytases, a group of enzymes widely distributed in plant and microorganisms, are able to hydrolyze a variety of inositol phosphates. Recently, phytase activity was discovered in nodules. However, the gene expression localization and its role in N2-fixing nodules are still unknown. In this work, two recombinant inbred lines (RILs) of common bean (Phaseolus vulgaris L.), selected as contrasting for N2 fixation under P deficiency, namely RILs 115 (P-efficient) and 147 (P-inefficient) were inoculated with Rhizobium tropici CIAT 899, and grown under hydroaeroponic conditions with sufficient versus deficient P supply. With in situ RT-PCR methodology, we found that phytase transcripts were particularly abundant in the nodule cortex and infected zone of both RILs. Under P deficiency, phytase transcripts were significantly more abundant for RIL115 than for RIL147, and more in the outer cortex than in the infected zone. Additionally, the high expression of phytase among nodule tissues for the P-deficient RIL115 was associated with an increase in phytase (33 %) and phosphatase (49 %) activities and efficiency in use of the rhizobial symbiosis (34 %). It is argued that phytase activity in nodules would contribute to the adaptation of the rhizobia-legume symbiosis to low-P environments.


Assuntos
6-Fitase/genética , Regulação Enzimológica da Expressão Gênica , Nitrogênio/metabolismo , Phaseolus/enzimologia , Fósforo/deficiência , Rhizobium/fisiologia , 6-Fitase/metabolismo , Regulação da Expressão Gênica de Plantas , Endogamia , Nitrogênio/análise , Fixação de Nitrogênio , Phaseolus/citologia , Phaseolus/genética , Phaseolus/fisiologia , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia , Análise de Sequência de DNA , Simbiose
6.
Planta ; 238(1): 107-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23575967

RESUMO

Although the role of phosphatases and antioxidant enzymes have been documented in phosphorus (P) deficiency tolerance, gene expression differences in the nodules of nitrogen fixing legumes should also affect tolerance to this soil constraint. In this study, root nodules were induced by Rhizobium tropici CIAT899 in two Phaseolus vulgaris recombinant inbred lines (RIL); RIL115 (low P-tolerant) and RIL147 (low P-sensitive) under hydroaeroponic culture with sufficient versus deficient P supply. Trehalose 6-P phosphatase and ascorbate peroxidase transcripts were localized within nodules in which O2 permeability was measured. Results indicate that differential tissues-specific expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts within nodules was detected particularly in infected zone and cortical cells. Under P-deficiency, trehalose 6-P phosphatase transcript was increased and mainly localized in infected zone and outer cortex of RIL115 as compared to RIL147. Ascorbate peroxidase transcript was highly expressed under P-sufficiency in the infected zone, inner cortex and vascular traces of RIL115 rather than RIL147. In addition, significant correlations were found between nodule O2 permeability and both peroxidase (r = 0.66*) and trehalose 6-P phosphatase enzyme activities (r = 0.79*) under sufficient and deficient P conditions, respectively. The present findings suggest that the tissue-specific localized trehalose 6-P phosphatase and ascorbate peroxidase transcripts of infected cells and nodule cortex are involved in nitrogen fixation efficiency and are likely to play a role in nodule respiration and adaptation to P-deficiency.


Assuntos
Ascorbato Peroxidases/genética , Oxigênio/metabolismo , Phaseolus/enzimologia , Monoéster Fosfórico Hidrolases/genética , Ascorbato Peroxidases/metabolismo , Eletrólitos/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Fixação de Nitrogênio/genética , Permeabilidade , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Nódulos Radiculares de Plantas/enzimologia
7.
Plant J ; 57(6): 1092-102, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19054369

RESUMO

Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.


Assuntos
Proteínas Fúngicas/metabolismo , Hebeloma/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Pinus/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Fúngico/genética , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Hebeloma/metabolismo , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Pinus/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose
8.
Mycorrhiza ; 17(6): 487-494, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17520293

RESUMO

Expression of a mycorrhizal fungal-specific phosphate (P) transporter gene (HcPT1) was studied in mycelium of the ectomycorrhizal fungus Hebeloma cylindrosporum, by in situ reverse transcriptase polymerase chain reaction using amplification of complementary DNA sequences. The expression of HcPT1 was visualised under two different P treatments. Mycelium was transferred to liquid medium with or without P and incubated for 5 days. Under P starvation, mycelium growth and vitality was reduced and the expression of HcPT1 up regulated. Enzyme-labelled fluorescent substrate was used to detect gene expression in situ with epi-fluorescence microscopy and to visualise it at the level of the individual hyphae both in starved and non-starved hyphae. Up-regulation of HcPT1 was observed as a more intense fluorescent signal and from the larger proportion of hyphae that showed expression.


Assuntos
Agaricales/metabolismo , Genes Fúngicos , Microscopia de Fluorescência/métodos , Micélio/metabolismo , Micorrizas , Proteínas de Transporte de Fosfato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Micélio/crescimento & desenvolvimento , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Fosfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA