Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(7): 5827-5836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37222866

RESUMO

BACKGROUND: Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accordingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical severity in patients with COVID-19. METHODS AND RESULTS: The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arterial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 patients from healthy controls. CONCLUSIONS: Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an adjuvant therapy in decreasing disease severity and death in COVID-19 patients.


Assuntos
COVID-19 , Melatonina , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antioxidantes/metabolismo , COVID-19/genética , Expressão Gênica , Estresse Oxidativo/genética , Gravidade do Paciente , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
2.
Neurotox Res ; 40(6): 2103-2116, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36394770

RESUMO

Brain injury and cognitive impairment are major health issues associated with neurodegenerative diseases in young and aged persons worldwide. Epigallocatechin-3-gallate (EGCG) was studied for its ability to protect against methionine (Met)-induced brain damage and cognitive dysfunction. Male mice were given Met-supplemented in drinking water to produce hyperhomocysteinemia (HHcy)-induced animals. EGCG was administered daily concurrently with Met by gavage. EGCG attenuated the rise in homocysteine levels in the plasma and the formation of amyloid-ß and tau protein in the brain. Cognitive and memory impairment in HHcy-induced mice were significantly improved by EGCG administration. These results were associated with improvement in glutamate and gamma-aminobutyric acid levels in the brain. EGCG maintained the levels of glutathione and the activity of antioxidant enzymes in the brain. As a result of the reduction of oxidative stress, EGCG protected against DNA damage in Met-treated mice. Moreover, maintaining the redox balance significantly ameliorated neuroinflammation evidenced by the normalization of IL-1ß, IL-6, tumor necrosis factor α, C-reactive protein, and IL-13 in the same animals. The decreases in both oxidative stress and inflammatory cytokines were significantly associated with upregulation of the antiapoptotic Bcl-2 protein and downregulation of the proapoptotic protein Bax, caspases 3 and 9, and p53 compared with Met-treated animals, indicating a diminution of neuronal apoptosis. These effects reflect and explain the improvement in histopathological alterations in the hippocampus of Met-treated mice. In conclusion, the beneficial effects of EGCG may be due to interconnecting pathways, including modulation of redox balance, amelioration of inflammation, and regulation of antiapoptotic proteins.


Assuntos
Lesões Encefálicas , Catequina , Hiper-Homocisteinemia , Camundongos , Masculino , Animais , Metionina/farmacologia , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/tratamento farmacológico , Estresse Oxidativo , Cognição , Proteínas Reguladoras de Apoptose , Catequina/farmacologia , Catequina/uso terapêutico , Racemetionina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA