Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838708

RESUMO

Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers.


Assuntos
Lipopolissacarídeos , Microbiota , Animais , Lipopolissacarídeos/farmacologia , Galinhas/metabolismo , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Imunoglobulina A Secretora , Ração Animal/análise
2.
Poult Sci ; 101(9): 102034, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926351

RESUMO

Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-ß, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1ß, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-ß pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.


Assuntos
Fígado Gorduroso , Transtornos do Metabolismo dos Lipídeos , Anormalidades Múltiplas , Animais , Peso Corporal , Galinhas/genética , Anormalidades Craniofaciais , Dieta Hiperlipídica , Suplementos Nutricionais , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Fígado Gorduroso/veterinária , Feminino , Glucosídeos , Quinase 3 da Glicogênio Sintase/metabolismo , Transtornos do Crescimento , Comunicação Interventricular , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Fígado/metabolismo , Fenóis , Fosfatidilinositol 3-Quinases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Triglicerídeos/metabolismo
3.
Front Immunol ; 13: 860889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386687

RESUMO

In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1ß), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.


Assuntos
Galinhas , Vitamina E , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Quercetina/farmacologia , RNA Mensageiro , Vitamina E/farmacologia
4.
Front Physiol ; 13: 873551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480036

RESUMO

The current study aims to investigate the effects of the synergy between quercetin and vitamin E in aged hen's diet on hatchability and antioxidant levels of the embryo and newly hatched chicks from prolonged storage eggs. A total of 400 breeder laying hens of 65 weeks of age were selected and randomly divided into 4 groups. Birds were fed a basal diet alone (Control), and basal diets supplemented with quercetin (Q) (0.4 g/kg) and vitamin E (VE) (0.2 g/kg) alone and their combination (0.4 g/kg Q + 0.2 g/kg VE) for 14 weeks, respectively, to determine their effects on yolk antioxidant status, fertility, embryonic mortality, hatchability, antioxidant status of embryonic tissues, as well as the antioxidant status of the newly hatched chicks. The results showed that the hen's dietary Q + VE increased the yolk weight, as well as increased the antioxidant status of the egg yolk (p < 0.05). Compared with the control group, the supplementation of Q + VE significantly increased the hatchability of set-fertile eggs and decreased early embryonic mortality in eggs stored for 7 and 14 days, respectively (p < 0.05), and also improved the antioxidant capacity of the embryos obtained from eggs stored for 14 days (before incubation) (p < 0.05). Moreover, Q + VE increased the levels of SOD, GSH-Px, T-AOC, T-SOD, and CAT in the liver, heart, and pectoral muscle of the embryo, 1-day-old and 14-day-old chicks (p < 0.05), as well as upregulated the antioxidant related genes (GPx-1, GPx-2, GPx-4, DIO-1, and SOD-1) in the liver of the embryo, 1-day-old and 14-day-old chicks hatched from 14-days storage eggs (p < 0.05). Meanwhile, the MDA levels were decreased by the Q + VE in the embryo and post-hatched chicks (p < 0.05). In conclusion, these findings suggested that maternal dietary Q + VE exerts beneficial synergistic effects on the antioxidant capacity of the egg yolk, embryo, and chicks during prolong egg storage, therefore, Q + VE could be used as a dietary measure to enhance hatchability and chick quality in poultry production.

5.
Poult Sci ; 101(6): 101851, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35472738

RESUMO

Aged male chickens experience rapid declines in spermatogenesis, antioxidant capacity, immunity, and hormone synthesis. Vitamin E plays a significant role in reproduction, nervous system function, and disease resistance in animals. Quercetin also exerts many biological effects, such as antioxidant ability, immunostimulation, and protection of spermatozoal plasma membranes. This study evaluated the effects of combining dietary quercetin (Q) and vitamin E (VE) on sperm quality, antioxidant capacity, immunity, and expression of genes related to spermatogenesis, immunity, apoptosis, and inflammation in aged male chickens. A total of 120 Tianfu breeder male chickens (65 wk old) were randomly allotted to 4 treatments with 3 replicates (10 birds each). The birds were fed diets containing Q (0.4g/kg), VE (0.2g/kg), Q+VE (0.4g/kg + 0.2g/kg), and a basal diet for 11 wk. At the end of the experimental period, blood, semen, liver, testes, and spleen samples were collected from 2 birds per replicate. Serum hormones, antioxidant parameters, cytokines, and immunoglobulins were evaluated; and the mRNA expression of genes related to spermatogenesis, apoptosis, and inflammation are determined in the testes and liver tissues. The results showed that the combination quercetin and vitamin E significantly promoted the sperm count and motility, as well as elevated the levels of testosterone, follicle-stimulating hormone, and luteinizing hormone, antioxidant enzymes (Superoxide dismutase, Glutathione, and Total antioxidant capacity), and serum immunoglobulins (IgA and IgM) in the aged male chickens; also Q+VE showed protective effects on the liver against injury. In addition, Q+VE significantly increased the expression of genes related to spermatogenesis (AR, pgk2, Cyclin A1, and Cyclin A2), immunity (IFN-γ and IL-2), and anti-inflammatory cytokines (IL-10) (P < 0.05), whereas the expression of proinflammatory cytokines (IL-1ß and IL-6) was decreased (P < 0.05). Taken together, these data indicate that the combination of quercetin and vitamin E improved reproductive characteristics such as spermatogenesis, sperm quality, and hormone regulation, as well as promoted antioxidant defense, hepatoprotective capacity, and immune response in aged male chickens without any detrimental effects.


Assuntos
Antioxidantes , Galinhas , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Galinhas/fisiologia , Citocinas/genética , Dieta/veterinária , Suplementos Nutricionais , Hormônios , Inflamação/veterinária , Masculino , Quercetina/farmacologia , Reprodução , Vitamina E/metabolismo
6.
J Anim Sci Biotechnol ; 13(1): 23, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35264238

RESUMO

Heat stress (HS) is an important environmental stress factor affecting poultry production on a global scale. With the rise in ambient temperature and increasing effects of global warming, it becomes pertinent to understand the effects of HS on poultry production and the strategies that can be adopted to mitigate its detrimental impacts on the performance, health, welfare, immunity, and survival of birds. Amino acids (AAs) have been increasingly adopted as nutritional modifiers in animals to ameliorate the adverse effects of HS. They are essential for protein synthesis, growth, maintenance, reproduction, immunity, stress response, and whole-body homeostasis. However, HS tends to adversely affect the availability, transport, absorption, and utilization of these AAs. Studies have investigated the provision of these AAs to poultry during HS conditions, and variable findings have been reported. Taurine, L-theanine, and L-citrulline are non-essential amino acids that are increasingly gaining attention as nutritional supplements in HS animals. Similarly, betaine is an amino acid derivative that possesses favorable biological properties which contributes to its role as a functional additive during HS. Of particular note, taurine is negligible in plants, while betaine, L-theanine, and L-citrulline can be found in selected plants. These nutrients are barely found in feed ingredients, but their supply has been shown to elicit important physiological roles including anti-stress effects, anti-oxidative, anti-inflammatory, gut promoting, and immunomodulatory functions. The present review provides information on the use of these nutritionally and physiologically beneficial nutrients as functional additives to poultry diets during HS conditions. Presently, although several studies have reported on the positive effects of these additives in human and murine studies, however, there is limited information regarding their utilization during heat stress in poultry nutrition. Therefore, this review aims to expound on the functional properties of these nutrients, their potentials for HS alleviation, and to stimulate further researches on their biological roles in poultry nutrition.

7.
Nutrients ; 13(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34836037

RESUMO

The importance of gut health in animal welfare and wellbeing is undisputable. The intestinal microbiota plays an essential role in the metabolic, nutritional, physiological, and immunological processes of animals. Therefore, the rapid development of dietary supplements to improve gut functions and homeostasis is imminent. Recent studies have uncovered the beneficial effects of dietary supplements on the immune response, microbiota, gut homeostasis, and intestinal health. The application of citrulline (a functional gut biomarker) and quercetin (a known potent flavonoid) to promote gut functions has gained considerable interest as both bioactive substances possess anti-inflammatory, anti-oxidative, and immunomodulatory properties. Research has demonstrated that both citrulline and quercetin can mediate gut activities by combating disruptions to the intestinal integrity and alterations to the gut microbiota. In addition, citrulline and quercetin play crucial roles in maintaining intestinal immune tolerance and gut health. However, the synergistic benefits which these dietary supplements (citrulline and quercetin) may afford to simultaneously promote gut functions remain to be explored. Therefore, this review summarizes the modulatory effects of citrulline and quercetin on the intestinal integrity and gut microbiota, and further expounds on their potential synergistic roles to attenuate intestinal inflammation and promote gut health.


Assuntos
Citrulina/farmacologia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Quercetina/farmacologia , Animais , Humanos , Tolerância Imunológica/efeitos dos fármacos
8.
Poult Sci ; 100(12): 101481, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34717121

RESUMO

Laying hens experience a rapid decline in egg production, egg quality, and immunity, usually at the end of the peak laying period. Quercetin, a known flavonoid, exerts biological activities, including phytoestrogenic, immunity, antibiotic, antioxidant, and anti-inflammatory properties. Vitamin E also shows egg production and immunoregulatory potential in animals. This study evaluated the capacity of dietary quercetin, vitamin E, and the combination of both, to promote egg production and egg quality, and to improve the immunity of aging breeder hens. We also elucidated how quercetin and vitamin E combination could synergistically affect egg production, egg quality, and immunity in aging breeder hens. A total of 400 Tianfu broiler breeders at the age of 52 wk were randomly allotted to 4 treatments with 4 replicates, 100 hens per treatment and 25 hens per replicate. They were fed diets containing quercetin at 0.4 g/kg, Vitamin E (200 mg/kg), quercetin and vitamin E (0.4 g/kg and 200 mg/kg), and a basal diet (control) for a period 10 wk. Daily feed intake and egg production rate were recorded, and weekly records were recorded on egg quality tests. At the end of the 10-wk experimental period, blood samples and immune organ (spleen) were collected from 2 birds per replicate, totaling 32 birds. Feed intake, immune organ index, serum cytokines, and immunoglobulins were evaluated, and the mRNA expression of genes related to immunity was determined from the spleen tissue. Generally, the results showed that separately or as a combination, supplemental quercetin and vitamin E significantly improved performance and egg quality (P < 0.05), and significantly increased serum immunoglobulins (IgA, IgM, and IgG) and cytokines (IFN-γ and IL-2) concentrations, as well as promoted immune organ development and index, and promoted the expression of splenic immune-related genes (IL-2 and INF-γ) (P < 0.05), compared with the control. It was confirmed in this study that the combination of quercetin and vitamin E exert synergistic effects on egg production, egg quality, and immune function in aging hens.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Envelhecimento , Ração Animal/análise , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais , Feminino , Quercetina/farmacologia , Reprodução , Vitamina E
9.
Animals (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203138

RESUMO

The fertility of female animals is negatively correlated with increasing chronological age. In aging broiler breeder hens, there is a decline in the functionality of the ovary and liver accompanied by hormonal or endocrine changes, a reduction in antioxidant capacity, and a decrease in folliculogenesis. Therefore, improving the reproductive function in aging breeder hens using dietary strategies is of great concern to the poultry breeder. This study evaluated the capacity of dietary quercetin (Q), vitamin E (VE), and their combination (Q + VE) to promote follicle development and attenuate organ inflammation by improving the antioxidant capacity of aging breeder hens. In this study, 400 broiler breeder hens (Tianfu broilers breeder hens, 435 days old) were allotted into four groups (100 birds each) with four replicates each (25 birds each). They were fed diets containing Q (0.4 g/kg), VE (0.2 g/kg), Q + VE (0.4 g/kg + 0.2 g/kg), and a basal diet for 10 weeks. The results showed that Q + VE improved the organ characteristics (p < 0.05), and also that Q + VE showed protective effects on the liver against injury, as well as increasing the antioxidant capacity of the liver, serum, and ovary (p < 0.05). Furthermore, liver lipid synthesis was increased remarkably, as indicated by the changes in triglyceride levels in hens fed Q + VE (p < 0.05). Levels of E2, FSH, and LH, their receptors, and mRNAs related to yolk precursor synthesis were increased by the Q + VE (p < 0.05). Therefore, the combination of quercetin and vitamin E synergistically promotes and regulates the transportation and exchange of synthetic substances among the liver-blood-ovary alliances to ensure the synchronous development and functional coordination between the liver and ovary in aging breeder hens.

10.
Poult Sci ; 100(3): 100803, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516464

RESUMO

Ammonia (NH3) at a high concentration has been recognized as a highly poisonous pollutant affecting both air and water quality. NH3, as a stimulus, exerts negative impact on broiler growth and production, but the molecular mechanisms are not clear yet. This study was designed to evaluate the effects of dietary supplementation of Bupleurum falcatum L saikosaponins (SP) on the growth and ileum health status in broilers exposed to NH3. Day-old Arbor Acers broilers (n = 480) were randomly allocated into 1 of 4 treatments. The main factors were dietary SP supplementation (0 or 80 mg/kg of diet) and NH3 challenge (with or without 70 ± 5 ppm NH3). The data of growth, intestinal morphology, and mRNA expression related to ileal function were collected from broilers exposed to NH3 for 7 d. Results showed that NH3 remarkably suppressed growth performance and intestinal development as well as induced biological injuries in the ileum of broilers, resulting from oxidative stress, mucous barrier damage, and immune dysfunction as well as upregulated apoptosis. These negative effects of NH3 were alleviated by the SP supplement. In conclusion, dietary supplementation of SP may be helpful in alleviating the detrimental effects of NH3 on the ileum development in broilers.


Assuntos
Bupleurum , Galinhas , Suplementos Nutricionais , Ácido Oleanólico/análogos & derivados , Saponinas , Amônia/toxicidade , Animais , Bupleurum/química , Dieta/veterinária , Poluentes Ambientais/toxicidade , Íleo/efeitos dos fármacos , Masculino , Ácido Oleanólico/farmacologia , Saponinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA