Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 179: 113971, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506863

RESUMO

Obesity is one of the major metabolic syndrome risk factors upon which altered metabolic pathways follow. This study aimed to discern altered metabolic pathways associated with obesity and to pinpoint metabolite biomarkers in serum of obese rats fed on high fructose diet using metabolomics. Further, the effect of standardized green versus black caffeinated aqueous extracts (tea and coffee) in controlling obesity and its comorbidities through monitoring relevant serum biomarkers viz. Leptin, adiponectin, spexin, malondialdehyde, total antioxidant capacity. Liver tissue oxidative stress (catalase, super oxide dismutase and glutathione) and inflammation (IL-1ß and IL-6) markers were assessed for green coffee and its mixture with green tea. Results revealed improvement of all parameters upon treatments with more prominence for those treated with green caffeinated extract (coffee and tea) especially in mixture. Upon comparing with obese rat group, the green mixture of coffee and tea exhibited anti-hyperlipidemic action through lowering serum triglycerides by 35.0% and elevating high density lipoprotein by 71.0%. Black tea was likewise effective in lowering serum cholesterol and low density lipoprotein by 28.0 and 50.6%, respectively. GC-MS- based metabolomics of rat serum led to the identification of 34 metabolites with obese rat serum enriched in fatty acids (oleamide).


Assuntos
Antioxidantes , Café , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Obesidade/metabolismo , Chá/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Metabolômica , Biomarcadores
2.
Biomarkers ; 28(2): 190-205, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484430

RESUMO

ContextGastric ulcer (GU) a widely distributed ailment is associated with many causes, including alcohol consumption.Materials and MethodsChemical profiling of Symphyotrichum squamatum ethanol extract (SSEE) was established via ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) and employed in a silver nano-formulation (SSEE-N-Ag). SSEE and SSEE-N-Ag antiulcer activities were estimated against ethanol-induced rats by biochemical, histological, and metabolomics assessments. Reduced glutathione, total antioxidant capacity and prostaglandin E2 levels and gastric mucosa histopathological examination were analysed. The rats' metabolome changing alongside action pathways were elucidated via metabolite profile coupled to multivariate data analysis.ResultsUPLC-MS profiling of SSEE identified 75 components belonging to various classes. Compared with control, EtOH-treated rats showed decreased of tissue GSH, TAC and PGE2 by 62.32%, 51.85% and 47.03% respectively. SSEE and SSEE-N-Ag administration mitigated biochemical and histopathological alterations. Serum metabolomics analysis revealed for changes in several low molecular weight metabolites with ulcer development. These metabolites levels were restored to normal post-administration of SSEE-N-Ag. SSEE-N-Ag as mediated via modulating numerous metabolic pathways such as lipids, pyrimidine, energy metabolism and phosphatidylinositol signalling. This study provides novel insight for metabolic mechanisms underlying gastric ulcer relieving effect.ConclusionPresent results revealed potential antiulcer effect of SSEE and SSEE-N-Ag by decreasing ulcer-associated syndromes, supporting their anti-ulcerogenic action.


Assuntos
Antiulcerosos , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Etanol/toxicidade , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Extratos Vegetais/química , Ratos Wistar , Metabolômica , Mucosa Gástrica
3.
J Genet Eng Biotechnol ; 20(1): 147, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36301384

RESUMO

BACKGROUND: Methotrexate (MX), a competitive inhibitor of dihydrofolate reductase, can inhibit DNA and RNA production and is a powerful anticancer agent widely utilized in clinical practice for treating nonneoplastic maladies, as psoriasis and rheumatoid arthritis; meanwhile, its probable prescription dose and interval of administration are strictly limited due to dose-related organ damage. Former studies verified that kidney, brain, liver, and lung harms are prospective obstacles of methotrexate administration. To understand the machinery of methotrexate-prompt toxicity, various mechanisms were investigated. The former is an autophagy defense mechanism; autophagy is a self-digesting mechanism responsible for the removal of damaged organelles and malformed proteins by lysosome. The contemporary article hypothesized that turmeric or its liposomal analog could defeat autophagy of MX-induced acute toxicity. Methotrexate, in a dose of 1.5 mg/kg, was administered intravenously followed by turmeric and liposomal turmeric treatment in a dose of 5 mg/kg for 30 days in rats. RESULTS: Increment in autophagy (AUTP) consent by MX administration was attenuated by concurrent treatment via turmeric and liposomal turmeric that was reliable on the alteration in apoptotic markers. The assembly of FOXO-3 in serum post methotrexate administration was suppressed by concurrent treatment via liposomal turmeric. Apoptosis/autophagic marker investigation was evaluated through the gene expression of Bax (BCL2-associated X protein)/Bcl2 (B-cell lymphoma 2)/P53 (tumor protein P53)/SiRT-1 (sirtuin silent mating-type information regulation 2 homolog 1) and FOXO-3 (forkhead box transcription factor-3)/ERDJ-4 (endoplasmic reticulum localized DnaJ homologs)/BNP (brain natriuretic peptide B) signaling. The cell death of all cells was categorized to achieve autophagy. Interestingly, Bax/Bcl2/P53/SiRT-1 signaling pathways were downregulated, contributing to inhibiting the initiation of autophagy. Meanwhile, FOXO-3/BNP/ERDJ-4 reduction-implicated noncanonical autophagy pathways were involved in methotrexate-induced autophagy, whereas this change was suppressed when turmeric was administered in liposomal form. CONCLUSION: These outcomes recommended that liposomal turmeric prevents MX-induced acute toxicity through its autophagy, antioxidant, and antiapoptotic properties.

4.
Biomarkers ; 27(3): 247-257, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34978233

RESUMO

CONTEXT: Gastric ulcer is regarded as one of the main clinical ailments with high morbidity and mortality rates. MATERIALS AND METHODS: Gastro-protective effect of Artemisia sieberi essential oil (AS-EO) in ethanol-induced rats was evaluated via biochemical, histopathological and large-scale metabolomics analyses. Glutathione (GSH), total antioxidant capacity (TAC), prostaglandin (PGE2) and tumour necrosis factor α (TNF-α) alongside with histopathological examination of gastric mucosa were analysed. Metabolites profiling coupled to Global Natural Products Social molecular networking platform (GNPS) and multivariate data analyses to reveal for changes in rats metabolome with treatments and involved action mechanisms. RESULTS: Pre-treatment with 100 and 200 mg/kg of AS-EO in EtOH-treated rats restored all parameters towards normal status compared to disease model. AS-EO alleviated the histological and pathological damage of gastric tissue caused by ethanol. Metabolites profiling revealed an increase in uracil, cholesterol and fatty acids/fatty acyl amides levels in ulcer rats and restored to normal levels post AS-EO intervention. These results indicated the efficacy of AS-EO in a dose-dependent manner, and to exert protective effects in ulcer rat model by targeting several metabolic pathways viz. lipid, energy, and nucleotide metabolisms. CONCLUSION: AS-EO adds to the known uses of genus Artemisia as anti-ulcerogenic agent by attenuating oxidative stress and inflammatory responses associated with an ulcer. Several novel biomarkers for ulcer progression in rats were identified and have yet to be confirmed in human models.


Assuntos
Antiulcerosos , Artemisia , Óleos Voláteis , Animais , Antiulcerosos/farmacologia , Etanol/farmacologia , Mucosa Gástrica , Humanos , Metabolômica , Óleos Voláteis/farmacologia , Ratos , Ratos Wistar , Úlcera/tratamento farmacológico , Úlcera/metabolismo , Úlcera/patologia
5.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105570

RESUMO

Wounds and burn injury are major causes of death and disability worldwide. Myricetin is a common bioactive flavonoid isolated naturally from the plant kingdom. Herein, a topical application of naturally isolated myricetin from the shoots of Tecomaria capensis v. aurea on excisional wound healing that was performed in albino rats. The wounded rats were treated every day with 10 and 20% myricetin for 14 days. During the experiment, the wound closure percentage was estimated at days 0, 7, and 14. Effects of myricetin on the inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and cluster of differentiation 68 (CD68) in the serum were evaluated using immunosorbent assay kits. The percentage of wound closure and contraction was delayed in wounded rats (67.35%) and was remarkably increased after treatment of wounded rats with myricetin; the treatment with 20% myricetin was the most potent (98.76%). Histological findings exhibited that 10% myricetin caused the formation of a large area of scarring at the wound enclosure and stratified squamous epithelium without the formation of papillae as in the control group. Treatment with 20% myricetin exhibited less area of scarring at the wound enclosure as well as re-epithelialization with a high density of fibroblasts and blood capillaries in the wound. Level elevations of serum pro-inflammatory cytokines, IL-1ß, and TNF-α and macrophage CD68 were decreased in wounded rats treated with myricetin. Thus, it can be suggested that the enhancements in inflammatory cytokines as well as systemic reorganization after myricetin treatment may be recommended to play a crucial part in the promotion of wound healing. The findings suggest that treatment with a higher dose of myricetin was better in improving wound curing in rats. It could serve as a potent anti-inflammatory agent and can be used as an adjunctive or alternative agent in the future.


Assuntos
Anti-Inflamatórios/química , Bignoniaceae/química , Queimaduras/tratamento farmacológico , Flavonoides/química , Extratos Vegetais/química , Brotos de Planta/química , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Anti-Inflamatórios/administração & dosagem , Antígenos CD/sangue , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/sangue , Antígenos de Diferenciação Mielomonocítica/metabolismo , Capilares/efeitos dos fármacos , Citocinas/sangue , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/efeitos dos fármacos , Flavonoides/administração & dosagem , Humanos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA