RESUMO
Kisspeptin-neurokinin B-dynorphin (KNDy) cells of the hypothalamus are a key component in the neuroendocrine regulation of GnRH secretion. Evidence in sheep and other species suggests that dynorphin released by KNDy cells inhibits pulsatile GnRH secretion by acting upon κ-opioid receptors (KOR). However, the precise anatomical location and neurochemical phenotype of KOR-expressing cells in sheep remain unknown. To this end, we determined the distribution of KOR mRNA and protein in the brains of luteal phase ewes, using an ovine specific KOR mRNA probe for in situ hybridization and an antibody whose specificity we confirmed by Western blot analyses and blocking peptide controls. KOR cells were observed in a number of regions, including the preoptic area (POA); anterior hypothalamic area; supraoptic and paraventricular nuclei; ventromedial, dorsomedial, and lateral hypothalamus; and arcuate nucleus. Next, we determined whether KOR is colocalized in KNDy and/or GnRH cells. Dual-label immunofluorescence and confocal analysis of the KNDy population showed a high degree of colocalization, with greater than 90% of these neurons containing KOR. Surprisingly, GnRH cells also showed high levels of colocalization in sheep, ranging from 74.4% to 95.4% for GnRH cells in the POA and medial basal hypothalamus, respectively. Similarly, 97.4% of GnRH neurons in the POA of ovariectomized, steroid-primed female rats also contained immunoreactive KOR protein. These findings suggest that the inhibitory effects of dynorphin on pulsatile GnRH secretion may occur either indirectly by actions upon KOR within the KNDy population and/or directly via the activation of KOR on GnRH cells.
Assuntos
Encéfalo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Western Blotting , Feminino , Imunofluorescência , Hipotálamo/metabolismo , Hibridização In Situ , Ovariectomia , Ratos , OvinosRESUMO
Feeding a high-concentrate diet to heifers during the juvenile period, resulting in increased body weight (BW) gain and adiposity, leads to early-onset puberty. In this study, we tested the hypothesis that the increase in GnRH/LH release during nutritional acceleration of puberty is accompanied by reciprocal changes in circulating leptin and central release of neuropeptide Y (NPY). The heifers were weaned at 3.5 months of age and fed to gain either 0.5 (Low-gain; LG) or 1.0 kg/day (High-gain; HG) for 30 weeks. A subgroup of heifers was fitted surgically with third ventricle guide cannulas and was subjected to intensive cerebrospinal fluid (CSF) and blood sampling at 8 and 9 months of age. Mean BW was greater in HG than in LG heifers at week 6 of the experiment and remained greater thereafter. Starting at 9 months of age, the percentage of pubertal HG heifers was greater than that of LG heifers, although a replicate effect was observed. During the 6-h period in which CSF and blood were collected simultaneously, all LH pulses coincided with or shortly followed a GnRH pulse. At 8 months of age, the frequency of LH pulses was greater in the HG than in the LG group. Beginning at 6 months of age, concentrations of leptin were greater in HG than in LG heifers. At 9 months of age, concentrations of NPY in the CSF were lesser in HG heifers. These observations indicate that increased BW gain during juvenile development accelerates puberty in heifers, coincident with reciprocal changes in circulating concentrations of leptin and hypothalamic NPY release.
Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta , Leptina/sangue , Neuropeptídeo Y/líquido cefalorraquidiano , Maturidade Sexual/fisiologia , Ração Animal/análise , Animais , Peso Corporal/fisiologia , Bovinos , Feminino , Hormônio Liberador de Gonadotropina/líquido cefalorraquidiano , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Neuropeptídeo Y/metabolismo , Radioimunoensaio/métodos , Fatores de Tempo , DesmameRESUMO
RFamide-related peptide 3 (RFRP3), the mammalian homologue of avian gonadotropin-inhibitory hormone, has been shown to negatively regulate the secretion of LH and may contribute to reproductive seasonality in some species. Herein, we examined the presence and potential role of the RFRP3-signaling system in regulating LH secretion in the mare during the breeding and nonbreeding seasons. Hypothalamic NPVF mRNA (the precursor mRNA for RFRP3) was detected at the level of the dorsomedial nucleus and paraventricular nucleus, but expression did not change with season. A greater number of RFRP3-expressing cells was observed throughout the rostral-caudal extension of the dorsomedial nucleus. Furthermore, adenohypophyseal expression of the RFRP3 receptor (NPFFR1) during the winter anovulatory season did not differ from that during either the follicular or luteal phases of the estrous cycle. When tested in primary adenohypophyseal cell culture or in vivo during both the breeding and nonbreeding seasons, neither equine nor ovine peptide sequences for RFRP3 suppressed basal or GnRH-mediated release of LH. However, infusion of RF9, an RFRP3 receptor-signaling antagonist, into seasonally anovulatory mares induced a robust increase in secretion of LH both before and following continuous treatment with GnRH. The results indicate that the cellular machinery associated with RFRP3 function is present in the equine hypothalamus and adenohypophysis. However, evidence for functionality of the RFRP3-signaling network was only obvious when an antagonist RF9 was employed. Because GnRH-induced release of LH was not affected by RF9, its actions may occur upstream from the gonadotrope to stimulate or disinhibit secretion of GnRH.
Assuntos
Cavalos , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Adeno-Hipófise/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Reprodução/fisiologia , Animais , Cruzamento , Células Cultivadas , Feminino , Cavalos/genética , Cavalos/metabolismo , Hipotálamo/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Adeno-Hipófise/efeitos dos fármacos , Estações do Ano , Distribuição TecidualRESUMO
Dynorphin, an endogenous opioid peptide, mediates progesterone-negative feedback on gonadotropin-releasing hormone (GnRH) neurons in other species. The role of dynorphin in humans is unclear. The objective of this study was to determine if dynorphin fibers have close contacts with GnRH neurons in humans. Dual-label immunocytochemistry was performed on postmortem human hypothalamic tissue. The majority of GnRH neurons, 87.5%, had close contacts with dynorphin fibers and multiple close contacts were common, 62.5%. There were no regional differences between the hypothalamus and preoptic area in the distribution of close contacts. More close contacts were identified on the GnRH dendrites compared to the cell bodies (P < .001), but this difference was not significant when corrected for length. In conclusion, dynorphin fibers form close contacts with GnRH neurons in humans. This neuroanatomical evidence may suggest that dynorphin has effects on GnRH regulation in humans as seen in other species.
Assuntos
Dinorfinas/análise , Hormônio Liberador de Gonadotropina/análise , Hipotálamo/química , Imuno-Histoquímica , Fibras Nervosas/química , Neurônios/química , Adulto , Dendritos/química , Feminino , Humanos , Hipotálamo/citologia , Pessoa de Meia-Idade , Vias Neurais/químicaRESUMO
Orphanin FQ (OFQ), also known as nociceptin, is a member of the endogenous opioid peptide family that has been functionally implicated in the control of pain, anxiety, circadian rhythms, and neuroendocrine function. In the reproductive system, endogenous opioid peptides are involved in the steroid feedback control of GnRH pulses and the induction of the GnRH surge. The distribution of OFQ in the preoptic area and hypothalamus overlaps with GnRH, and in vitro evidence suggests that OFQ can inhibit GnRH secretion from hypothalamic fragments. Using the sheep as a model, we examined the potential anatomical colocalization between OFQ and GnRH using dual-label immunocytochemistry. Confocal microscopy revealed that approximately 93% of GnRH neurons, evenly distributed across brain regions, were also immunoreactive for OFQ. In addition, almost all GnRH fibers and terminals in the external zone of the median eminence, the site of neurosecretory release of GnRH, also colocalized OFQ. This high degree of colocalization suggested that OFQ might be functionally important in controlling reproductive endocrine events. We tested this possibility by examining the effects of intracerebroventricular administration of [Arg(14), Lys(15)] OFQ, an agonist to the OFQ receptor, on pulsatile LH secretion. The agonist inhibited LH pulse frequency in both luteal phase and ovariectomized ewes and suppressed pulse amplitude in the latter. The results provide in vivo evidence supporting a role for OFQ in the control of GnRH secretion and raise the possibility that it acts as part of an ultrashort, autocrine feedback loop controlling GnRH pulses.