Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 138: 506-515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135416

RESUMO

Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.


Assuntos
Arsênio , Brassica rapa , Selênio , Agrobacterium , Arsênio/toxicidade , Bactérias , Solo , Oxirredução
2.
Sci Total Environ ; 833: 155203, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421462

RESUMO

Selenium (Se) is an essential trace element for life. Se reduction has attracted much attention in the microbial Se cycle, but there is less evidence for Se oxidation. In particular, it is unknown whether microorganisms oxidise organic Se(-II). In this study, four strains of bacteria, namely Dyella spp. LX-1 and LX-66, and Rhodanobacter spp. LX-99 and LX-100, isolated from seleniferous soil, were involved in the oxidation of selenomethionine (SeMet), selenocystine (SeCys2), selenourea and Se(0) to selenite (Se(IV)) in pure cultures. The oxidation rates of organic Se were more rapidly than those of Se(0) in liquid media. Then Se(0) and SeMet were used as examples, microbial oxidation was the predominant process for both additional Se(0) and SeMet in sterilised alkaline or acidic soils. The Se(IV) concentrations were significantly higher at pH 8.56 than at pH 5.25. In addition, water-soluble Se (SOLSe) and exchangeable and carbonate-bound Se (EXC-Se) fractions increased dramatically with these four Se-oxidising bacteria in unsterilised seleniferous soil. To our knowledge, this is the first study to find that various bacteria are involved in the oxidation of organic Se to Se oxyanions, bridging the gap of Se redox in the Se biogeochemical cycle.


Assuntos
Selênio , Bactérias , Oxirredução , Ácido Selenioso , Selênio/química , Selenometionina , Selenito de Sódio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA