Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058007

RESUMO

Tomato (Solanum lycopersicum L.) is an important fruit and vegetable crop with high economic value due to its rich vitamins (Friedman. 2002). Over the past five years, due to tomato brown rugose fruit virus (ToBRFV) infection, the tomato production in many countries and regions in Asia, America and Europe have experienced declines in yield and quality (Salem et al. 2023). ToBRFV is a positive-sense single-stranded RNA virus of the genus Tobamovirus in the family Virgaviridae (Salem et al. 2016). In the field, ToBRFV mainly infects solanaceous crops, including tomato and pepper (Zhang et al. 2022). Symptoms on ToBRFV-infected tomato plants mainly include foliar mottle, vein necrosis, and brown mottled rugose fruit (Alfaro-Fernández et al. 2020, Hamborg et al. 2022, Ma et al. 2021). In April 2023, about 150 tomato plants showing leaf curl, brown patch, and rugose surface on fruits were found in a greenhouse grown with about 500 tomato plants in Huludao City, Liaoning province, China. Two leaves and eight fruits from each of 10 symptomatic tomato plants were sampled and subjected to dot enzyme-linked immunosorbent assay (Dot-ELISA) with an antibody against ToBRFV (LV BAO, Chengdu, China); and all samples tested positive. Sap inoculations were prepared from 0.1 g of ToBRFV-positive tomato leaves via homogenization with 0.01 mol·L-1 PBS (phosphate buffered saline, pH 7.2), which were then inoculated mechanically onto 10 tomato cv. Moneymaker and 10 Nicotiana benthamiana plants at four- to six-leaf stage, respectively. At 10 days post inoculation (dpi), the leaf curl symptoms of all tomato plants were shown, which were consistent with those on greenhouse-infected plants. At 5 dpi, the upper leaves of all N. benthamiana plants showed yellowing and curling symptoms. The results of Dot-ELISA assays revealed that these mechanically inoculated plants were positive for ToBRFV. Total RNAs of inoculated and greenhouse-collected samples were extracted using TRIzolTM reagent and analyzed by reverse-transcription (RT)-PCR with specific primers ToBRFV-FD (5' GTCCCGATGTCTGTAAGGCTTGC) and ToBRFV-RD (5' GCAGGTGCAGAGGACCATTGTAA) for ToBRFV detection, respectively. The results showed that a 680-bp fragment was obtained in all tested samples. Then, primers ToBRFV-F1 (5' GTGTATTTTTTACAACATATACC) and ToBRFV-R1 (5' AACCATTGACTCAGAACTC), ToBRFV-F2 (5' TAGCCAAGAATCACGCATG) and ToBRFV-R2 (5' AGCAGCAATAATCACCGTA), ToBRFV-F3 (GAAAGAGTGGGGACGTTACAACATTCATCGGTAAT) and ToBRFV-R3 (TGGGCCCCTACCGGGGGTTCCGGGGGAATTCGAAT) were used to amplify the full-length sequence of ToBRFV using field-collected samples. The methods of primer design are shown in supplemental file 1. The sequence obtained by Sanger sequencing showed 99.86% nucleotide (nt) identity with ToBRFV-SD isolate (accession no. MT018320.1) from Shandong province, China. The full-length sequence of ToBRFV was uploaded to GenBank database with the accession number OR437354. To our knowledge, this is the first report of ToBRFV infecting tomato in Northeast China.

2.
J Agric Food Chem ; 70(39): 12270-12286, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126240

RESUMO

Cucumber green mottle mosaic virus (CGMMV) infection causes "blood flesh" symptoms in watermelon fruits, which severely reduces yield and edibleness. However, the growth of watermelon fruits is strongly associated with boron (B), a trace element for improving fruit quality. In this study, B-gradient hydroponic experiments (B concentration: 0, 2.86, and 5.72 mg·L-1 H3BO3) and foliar-spray experiments (B concentration: 30 and 300 mg·L-1 H3BO3) were performed. We found that the B-supplement could inhibit CGMMV infection and especially relieve "blood flesh" symptoms in watermelon fruits. The nutrient element, soluble sugar, and cell wall polysaccharide contents and their metabolism- and transport-related gene expressions were determined in leaves and fruits of the watermelons in B-gradient hydroponic and foliar-spray experiments. We found that the accumulation and metabolism of nutrients and carbohydrates in cells were disrupted by CGMMV infection; however, the B-supplement could restore and maintain their homeostasis. Additionally, we uncovered that NIP5;1 and SWEET4, induced by B-application with CGMMV infection, could majorly contribute to the resistance to CGMMV infection by regulating nutrient elements and carbohydrate homeostasis. These results provided a novel insight into the molecular mechanism of B-mediated CGMMV suppression and an efficient method of B-application for the improvement of watermelon quality after CGMMV infection.


Assuntos
Citrullus , Oligoelementos , Boro , Carboidratos , Doenças das Plantas , Açúcares , Tobamovirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA