Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 222(Pt B): 2868-2877, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228816

RESUMO

Acid hydrolysis is a crucial method for modifying granular starch, but it is often conducted at low temperatures (below 55 °C) for an extended period of time to prevent crystallinity loss. The high-temperature acid hydrolysis (HTAH) behavior of heat-moisture treated (HMT) starch at 69 °C was investigated for the first time. The crystalline structure of starch was enhanced by HMT, confirmed by its rheological, thermal, and infrared Fourier transform spectroscopy results. The amorphous structure of HMT starch was preferentially hydrolyzed with high reactivity, related to a fast hydrolysis stage (4.17 × 10-2 min-1). And the crystalline flakes were separated from starch granules, accompanied by strengthened molecular interactions. HMT starch was transformed from 16.98 µm granules to 158 nm thick and 2.57 µm broad flakes with a 6.40 % increase in crystallinity after 40 min of hydrolysis. For native starch, the HTAH destroyed the crystalline structure due to gelatinization, resulting mainly gelatinous aggregates. These evidenced that the hydrolysis of granular starch was successfully performed at a relatively high temperature by introducing heat-moisture pre-treatment. This study could provide a novel perspective on the combination of increasing temperature and pre-treatment for granular starch hydrolysis intensification design, as well as a strategy for efficiently preparing small-sized crystalline starch, which has promising applications in Pickering emulsion and material filler.


Assuntos
Temperatura Alta , Zea mays , Hidrólise , Temperatura , Amido/química , Ácidos
2.
Int J Biol Macromol ; 202: 354-365, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35033525

RESUMO

Turmeric is an herb with multiple bioactive substances and health benefits. Drying is one of the most important steps of its processing and sales. In order to obtain high-quality turmeric products, we used five different pretreatment methods to treat turmeric prior to pulse-spouted microwave vacuum drying (PSMVD), including carboxymethyl cellulose coating (CMC), pectin coating (P), ultrasound (US) and their combination (CMCUS or PUS). The effect of different pretreatments on the drying kinetics, quality attributes and microstructure of turmeric were evaluated. Results showed that the US pretreatment had the shortest drying time (60 min), while coating treatment did not significantly affect drying rate. Dried turmeric with coating pretreatment had lower rehydration ratio and water adsorption capacity compared with individual ultrasound treatment. Carboxymethyl cellulose coating protected bioactive substances better than pectin coating. Moreover, CMCUS pretreatment showed significantly lower total color change, higher curcumin content, total phenols and flavonoid content as well as antioxidant capacity in all dried samples. Microstructure observation showed that the polysaccharide coating covering the surface of turmeric might reduce the degradation of bioactive compounds. Therefore, the CMCUS pretreatment before PSMVD of turmeric was recommended due to the efficiency and quality protections.


Assuntos
Carboximetilcelulose Sódica , Curcuma , Curcuma/química , Dessecação/métodos , Pectinas , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA