Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2943-2955, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37133789

RESUMO

Haematocarpus validus (Miers) Bakh. f. ex Forman, a lesser-known fruit and medicinal plant of high nutraceutical and medicinal value, is used as anti-arthritic, hepatoprotective, and anti-inflammatory agents in ethnomedicine. Metabolome studies in H. validus are a virgin area of research and here we report the spectra of non-volatiles present in the methanolic leaf and fruit extract, using high-resolution liquid chromatography-mass spectrometry. Furthermore, the alkaloid sinomenine was quantified using high-performance thin layer chromatography spectrodensitometric analysis owing to its pharmacological importance as anti-arthritic and anti-inflammatory drug. Electrospray ionization with protonation in positive mode was selected for the analysis and the spectral data was interrogated using MassHunter software. A total of 40 compounds were identified from leaf and fruit samples and the major classes of compounds identified were alkaloids, terpenoids, steroids, tripeptides, vitamins, and related compounds. For separation and quantitation of sinomenine, chloroform:methanol:water (60:30:6.5, v/v) was used as the mobile phase and sinomenine hydrochloride as reference compound. The analysis confirmed the presence of sinomenine in both non-defatted and defatted methanolic leaf extract with quantities 45.73 and 26.02 mg/100 g dry weight, respectively. H. validus is a non-conventional source of sinomenine, the anti-arthritic and anti-inflammatory alkaloid. Sinomenine detected in this study supports the ethnomedicinal uses of H. validus as an anti-arthritic agent. Further study is needed to elucidate the underlying molecular mechanism of its anti-arthritic attributes as well as the corresponding structure-activity relationships.


Assuntos
Alcaloides , Antineoplásicos , Morfinanos , Frutas , Morfinanos/farmacologia , Anti-Inflamatórios/uso terapêutico , Metanol , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia
4.
J Biomol Struct Dyn ; : 1-23, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105230

RESUMO

Since the end of February 2020, the world has come to a standstill due to the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Since then, the global scientific community has explored various remedies and treatments against this virus, including natural products that have always been a choice because of their many benefits. Various known phytochemicals are well documented for their antiviral properties. Research is being carried out to discover new natural plant products or existing ones as a treatment measure for this disease. The three important targets in this regard are-papain like protease (PLpro), spike protein, and 3 chymotrypsin like proteases (3CLpro). Various docking studies are also being elucidated to identify the phytochemicals that modulate crucial proteins of the virus. The paper is simultaneously a comprehensive review that covers recent advances in the domain of the effect of various botanically derived natural products as an alternative treatment approach against Coronavirus Disease 2019 (COVID-19). Furthermore, the docking analyses revealed that rutin (inhibitor of the major protease of SARS-CoV-2), gallocatechin (e.g., interacting with 03 hydrogen bonds with a spike-like protein), lycorine (showing the best binding affinity with amino acids GLN498, THR500 and GLY446 of the spike-like protein), and quercetrin (inhabiting at its residues ASP216, PHE219, and ILE259) are promising inhibitors of SARS­CoV­2.Communicated by Ramaswamy H. Sarma.

5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 191-212, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36214865

RESUMO

Oroxylin A (OA), a well-known constituent of the root of Scutellariae plants, has been used in ethnomedicine already for centuries in treating various neoplastic disorders. However, only recent molecular studies have revealed the different mechanisms behind its action, demonstrating antiproliferative, anti-inflammatory, and proapoptotic effects, restricting also the spread of cancer cells to distant organs. A variety of cellular targets and modulated signal transduction pathways regulated by OA have been determined in diverse cells derived from different malignant tissues. In this review article, these anticancer activities are thoroughly described, representing OA as a potential lead structure for the design of novel more potent anticancer medicines. In addition, co-effects of this natural compound with conventional anticancer agents are analyzed and the advantages provided by nanotechnological methods for more efficient application of OA are discussed. In this way, OA might represent an excellent example of using ethnopharmacological knowledge for designing modern medicines.


Assuntos
Antineoplásicos , Flavonoides , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Linhagem Celular Tumoral
6.
Biotechnol Bioeng ; 120(1): 82-94, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224758

RESUMO

Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Plantas/genética , Engenharia Metabólica , Compostos Fitoquímicos
7.
Onco Targets Ther ; 15: 1419-1448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36474507

RESUMO

Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.

8.
Biomed Pharmacother ; 155: 113658, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162370

RESUMO

Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Óxidos/toxicidade , Cobre , Prata , Espécies Reativas de Oxigênio , Óxido de Magnésio , Dióxido de Silício , Nanopartículas Metálicas/toxicidade , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Citocinas , Extratos Vegetais/farmacologia
9.
Appl Microbiol Biotechnol ; 106(17): 5399-5414, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35941253

RESUMO

Gloriosa superba L., commonly known as "gloriosa lily," "glory lily," and "tiger claw," is a perennial climber in the Liliaceae family. This plant is used in African and Southeast Asian cultures as an ayurvedic medicinal herb to treat various health conditions. Its main bioactive component is colchicine, which is responsible for medicinal efficacies as well as poisonous properties of the plant. A high market demand, imprudent harvesting of G. superba from natural habitat, and low seed setting have led scientists to explore micropropagation techniques and in vitro optimization of its phytochemicals. Plant growth regulators have been used to induce callus, root, and shoot organogenesis, and somatic embryogenesis in vitro. This review is aimed at presenting information regarding the occurrence, taxonomic description, phytochemistry, micropropagation, in vitro secondary metabolite, and synthetic seed production. The data collected from the existing literature, along with an analysis of individual study details, outcomes, and variations in the reports, will contribute to the development of biotechnological strategies for conservation and mass propagation of G. superba. KEY POINTS: • Latest literature on micropropagation of Gloriosa superba. • Biotechnological production and optimization of colchicine. • Regeneration, somatic embryogenesis, and synthetic seed production.


Assuntos
Colchicaceae , Plantas Medicinais , Colchicina , Sementes
10.
Front Pharmacol ; 13: 824132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645819

RESUMO

Background: COPD (chronic obstructive pulmonary disease) is a serious health problem worldwide. Present treatments are insufficient and have severe side effects. There is a critical shortage of possible alternative treatments. Medicinal herbs are the most traditional and widely used therapy for treating a wide range of human illnesses around the world. In several countries, different plants are used to treat COPD. Purpose: In this review, we have discussed several known cellular and molecular components implicated in COPD and how plant-derived chemicals might modulate them. Methods: We have discussed how COVID-19 is associated with COPD mortality and severity along with the phytochemical roles of a few plants in the treatment of COPD. In addition, two tables have been included; the first summarizes different plants used for the treatment of COPD, and the second table consists of different kinds of phytochemicals extracted from plants, which are used to inhibit inflammation in the lungs. Conclusion: Various plants have been found to have medicinal properties against COPD. Many plant extracts and components may be used as novel disease-modifying drugs for lung inflammatory diseases.

11.
J Cell Mol Med ; 26(11): 3083-3119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502487

RESUMO

Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.


Assuntos
Piper betle , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Etnofarmacologia , Piper betle/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
12.
Front Pharmacol ; 13: 827411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592415

RESUMO

Attention deficit hyperactivity disorder (ADHD) is commonly a neurodevelopmental behavioural disorder in children and adolescents. Mainly characterized by symptoms like lack of attention, hyperactivity, and impulsiveness, it can impact the overall mental development of the one affected. Several factors, both genetic and non-genetic, can be responsible for this disorder. Although several traditional treatment methods involve medication and other counselling techniques, they also come with different side effects. Hence, the choice is now shifting to alternative treatment techniques. Herbal treatments are considered one of the most popular complementary and alternative medicine (CAM) administered. However, issues related to the safety and efficacy of herbal remedies for the treatment of ADHD need to be investigated further. This study aims to find out the recent advancement in evidence-based use of herbal remedies for ADHD by a comprehensive and systematic review that depicts the results of the published works on herbal therapy for the disorder. The electronic databases and the references retrieved from the included studies present related randomized controlled trials (RCTs) and open-label studies. Seven RCTs involving children and adolescents diagnosed with ADHD met the inclusion criteria. There is a fair indication of the efficacy and safety of Melissa officinalis L., Bacopa monnieri (L.) Wettst., Matricaria chamomilla L., and Valeriana officinalis L. from the studies evaluated in this systematic review for the treatment of various symptoms of ADHD. Limited evidence was found for Ginkgo biloba L. and pine bark extract. However, various other preparations from other plants did not show significant efficacy. There is inadequate proof to strongly support and recommend the administration of herbal medicines for ADHD, but more research is needed in the relevant field to popularize the alternative treatment approach.

13.
Appl Microbiol Biotechnol ; 106(5-6): 1837-1854, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218388

RESUMO

Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.


Assuntos
Bacopa , Saponinas , Triterpenos , Agrobacterium/genética , Bacopa/química , Bacopa/metabolismo , Biotecnologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Saponinas/metabolismo , Triterpenos/metabolismo
14.
Appl Microbiol Biotechnol ; 106(3): 905-929, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039927

RESUMO

Polyamines (PAs) are ubiquitous low-molecular-weight, aliphatic compounds with wide as well as complex application in fundamental areas of plant growth and development. PAs are mediator of basic metabolism of organisms which include cell division and differentiation, biotic and abiotic stress tolerance, reversal of oxidative damage, stabilization of nucleic acids, and protein and phospholipid binding. In plants, it attributes in direct and indirect organogenesis, endogenous phytohormone regulation, cellular compartmentalization, fruit and flower development, senescence, and secondary metabolite production which are highly tuned as first line of defense response. There are several aspects of polyamine-directed mechanism that regulate overall plant growth in vitro and in vivo. In the present review, we have critically discussed the role played by polyamine on the enhanced production of bioactive natural products and how the same polyamines are functioning against different environmental stress conditions, i.e., salinity, drought, high CO2 content, herbivory, and physical wounding. The role of polyamines on elicitation process has been highlighted previously, but it is important to note that its activity as growth regulator under in vitro condition is correlated with an array of intertwined mechanism and physiological tuning. Medicinal plants under different developmental stages of micropropagation are characterized with different functional aspects and regulatory changes during embryogenesis and organogenesis. The effect of precursor molecules as well as additives and biosynthetic inhibitors of polyamines in rhizogenesis, callogenesis, tuberization, embryogenesis, callus formation, and metabolite production has been discussed thoroughly. The beneficial effect of exogenous application of PAs in elicitation of secondary metabolite production, plant growth and morphogenesis and overall stress tolerance are summarized in this present work. KEY POINTS: • Polyamines (PAs) play crucial roles in in vitro organogenesis. • PAs elicitate bioactive secondary metabolites (SMs). • Transgenic studies elucidate and optimize PA biosynthetic genes coding SMs.


Assuntos
Plantas Medicinais , Poliaminas , Biotecnologia , Metabolômica , Desenvolvimento Vegetal
15.
J Ethnopharmacol ; 284: 114744, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656666

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional knowledge is a particular form of practice or skill set that was developed in ancient times and was sustained through generations via the passing of knowledge, essentially confined within a specific tribe, local people, or family lineages. Ethnodermatological use of medicinal plants in India is still a subject to conduct more studies to see if there is chemical, microbiological, and/or clinical evidence, from a scientific perspective, of their effectiveness for those skin disorders. Thus, this review can be the basis for further studies and may provide targets for drug development. AIM OF THE STUDY: We compile and emphasize the most important part of ethnodermatology, namely, traditional knowledge of medicinal plants and their applications for several skin diseases in India. We also include a brief review and explanation on dermatology in Ayurvedic and Unani medicine. We review the pharmacological activity of extracts derived from some of the most cited plants against problem skin diseases as well. MATERIALS AND METHODS: Different kinds of key phrases such as "Indian traditional ethnodermatology", "ethnodermatology", "ethnobotany", "skin diseases", "Ayurveda dermatology", "pharmacological activity" were searched in online search servers/databases such as Google Scholar (https://scholar.google.com/), ResearchGate (https://www.researchgate.net/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), NISCAIR Online Periodicals Repository (NOPR) (http://nopr.niscair.res.in/). Based upon the analyses of data obtained from 178 articles, we formulated several important findings which are a summary shown in Tables. Tables. A total of 119 records of plants' uses have been found across India against 39 skin diseases. These are depicted with their localities of report, parts used, and preparation and administration methods against particular skin diseases. RESULTS: The knowledge and utilisation of herbal medicine in the Indian subcontinent has great potential to treat different kinds of human skin disorders. The administration of extracts from most of the plant species used is topical and few only are administrated orally. We also investigated the pharmacological activity of the extracts of the most cited plants against mice, bacterial and fungal pathogens, and human cells. CONCLUSIONS: Complementary therapy for dermatological problems and treatment remains the main option for millions of people in the Indian subcontinent. This review on the practices of ethnobotanical dermatology in India confirms the belief that their analysis will accelerate the discovery of new, effective therapeutic agents for skin diseases. However, more studies and clinical evidence are still required to determine if the identified species may contribute to skin condition treatment, particularly in atopic eczema. Today, ethnodermatology is a well-accepted international discipline and many new practices have been initiated in numerous countries. We hope this article will further accelerate the development of this area to identify a new generation of natural human skin treatments that will help meet the growing consumer demand for safe, sustainable, and natural treatments. In this context, research on plants utilised in ethnodermatology in India and elsewhere should be intensified.


Assuntos
Fármacos Dermatológicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Fármacos Dermatológicos/isolamento & purificação , Etnobotânica , Etnofarmacologia , Humanos , Índia , Ayurveda/métodos , Camundongos , Dermatopatias/tratamento farmacológico
16.
Biofactors ; 48(1): 22-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34919768

RESUMO

Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.


Assuntos
Diosgenina , Neoplasias , Saponinas , Diosgenina/análogos & derivados , Diosgenina/química , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Extratos Vegetais/química
17.
Biomed Pharmacother ; 146: 112555, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954639

RESUMO

Human exposure to radiation has expanded considerably in recent years, due to a wide range of medical, agricultural, and industrial applications. Despite its beneficial utilities, radiation is also known to have a deleterious effect on cells and tissues, largely through the creation of free radicals, which cause severe damage to biological systems through processes such as DNA double/single-strand fragmentation, protein modification, and upregulation of lipid peroxidation pathways. In addition, radiation damages genetic material while inducing hereditary genotoxicity. Developing measures to counter radiation-induced damage is thus considered to be of significant importance. Considering the inherent capability of plants to survive radiative conditions, certain plants and natural compounds have been the subject of investigations to explore and harness their natural radioprotective abilities. Podophyllum hexandrum, an Indian medicinal plant with several known traditional phytotherapeutic uses, is considered in particular to be of immense therapeutic importance. Recent studies have been conducted to validate its radioprotective potential alongside discovering its protective mechanisms following γ-radiation-induced mortality and disorder in both mice and human cells. These findings show that Podophyllum and its constituents/natural compounds protect the lungs, gastrointestinal tissues, hemopoietic system, and testis by inducing DNA repair pathways, apoptosis inhibition, free radical scavenging, metal chelation, anti-oxidation and anti-inflammatory mechanisms. In this review, we have provided an updated, comprehensive summary of ionizing radiations and their impacts on biological systems, highlighting the mechanistic and radioprotective role of natural compounds from Podophyllum hexandrum.


Assuntos
Berberidaceae , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Dose Máxima Tolerável , Medicina Tradicional , Mitocôndrias/efeitos dos fármacos , Protetores contra Radiação/química
18.
Biomed Pharmacother ; 143: 112175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649336

RESUMO

Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.


Assuntos
Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Withania , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , COVID-19/virologia , Humanos , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/toxicidade , Segurança do Paciente , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Raízes de Plantas , Psicotrópicos/isolamento & purificação , Psicotrópicos/farmacologia , Psicotrópicos/toxicidade , Medição de Risco , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Withania/química , Tratamento Farmacológico da COVID-19
19.
Conserv Physiol ; 9(1): coab073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548925

RESUMO

The discipline 'urban ethnopharmacology' emerged as a collection of traditional knowledge, ancient civilizations, history and folklore being circulated since generations, usage of botanical products, palaeobotany and agronomy. Non-traditional botanical knowledge increases the availability of healthcare and other essential products to the underprivileged masses. Intercultural medicine essentially involves 'practices in healthcare that bridge indigenous medicine and western medicine, where both are considered as complementary'. A unique aspect of urban ethnopharmacology is its pluricultural character. Plant medicine blossomed due to intercultural interactions and has its roots in major anthropological events of the past. Unani medicine was developed by Khalif Harun Al Rashid and Khalif Al Mansur by translating Greek and Sanskrit works. Similarly, Indo-Aryan migration led to the development of Vedic culture, which product is Ayurveda. Greek medicine reached its summit when it travelled to Egypt. In the past few decades, ethnobotanical field studies proliferated, especially in the developed countries to cope with the increasing demands of population expansion. At the same time, sacred groves continued to be an important method of conservation across several cultures even in the urban aspect. Lack of scientific research, validating the efficiency, messy applications, biopiracy and slower results are the main constrains to limit its acceptability. Access to resources and benefit sharing may be considered as a potential solution. Indigenous communities can copyright their traditional formulations and then can collaborate with companies, who have to provide the original inventors with a fair share of the profits since a significant portion of the health economy is generated by herbal medicine. Search string included the terms 'Urban' + 'Ethnopharmacology', which was searched in Google Scholar to retrieve the relevant literature. The present review aims to critically analyse the global concept of urban ethnopharmacology with the inherent plurality of the cross-cultural adaptations of medicinal plant use by urban people across the world.

20.
Saudi Pharm J ; 29(8): 879-907, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34408548

RESUMO

Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA