Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Mol Med ; 8(6): 626-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27137492

RESUMO

Early or late pubertal onset affects up to 5% of adolescents and is associated with adverse health and psychosocial outcomes. Self-limited delayed puberty (DP) segregates predominantly in an autosomal dominant pattern, but the underlying genetic background is unknown. Using exome and candidate gene sequencing, we have identified rare mutations in IGSF10 in 6 unrelated families, which resulted in intracellular retention with failure in the secretion of mutant proteins. IGSF10 mRNA was strongly expressed in embryonic nasal mesenchyme, during gonadotropin-releasing hormone (GnRH) neuronal migration to the hypothalamus. IGSF10 knockdown caused a reduced migration of immature GnRH neurons in vitro, and perturbed migration and extension of GnRH neurons in a gnrh3:EGFP zebrafish model. Additionally, loss-of-function mutations in IGSF10 were identified in hypothalamic amenorrhea patients. Our evidence strongly suggests that mutations in IGSF10 cause DP in humans, and points to a common genetic basis for conditions of functional hypogonadotropic hypogonadism (HH). While dysregulation of GnRH neuronal migration is known to cause permanent HH, this is the first time that this has been demonstrated as a causal mechanism in DP‡.


Assuntos
Movimento Celular , Imunoglobulinas/genética , Proteínas Mutantes/genética , Neurônios/fisiologia , Puberdade Tardia/fisiopatologia , Adolescente , Animais , Análise Mutacional de DNA , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/citologia , Masculino , Modelos Animais , Neurônios/metabolismo , Análise de Sequência de DNA , Peixe-Zebra
2.
Minerva Endocrinol ; 41(2): 250-65, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26934719

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons have a pivotal role in the physiological functions of hypotahlamic-pituitary-gonadal (HPG) axis. The pulsatile releasing of GnRH hormone into the hypophyseal portal circulation at the median eminence represent the first domino in the HPG cascade of events that regulate the development, fertility and aging in all vertebrates. These neurons principally originate in the olfactory placode and migrate during early embryonal stages into the hypothalamus. Alterations in developmental processes or in the releasing of GnRH hormone lead to a rare and complex disorder of the reproductive axis called congenital hypogonadotropic hypogonadism (CHH). Genetic screening of human patients and the use of model systems have led to the identification of several genes involved in the CHH pathogenesis underlying its oligogenic nature. Nevertheless CHH remains, for a large cohort of patients, idiopathic and GnRH neurogenesis processes not fully understood. This is due to intrinsic difficulties that exist in the analysis of earliest embryonic developmental stages and in the methodologies developed to study the CHH-causing genes. In this regard, zebrafish embryos, on account of its external fertilization and development, allow a real-time analysis that could overcome some of the above mentioned limitations. Moreover, the recent availability of several transgenic zebrafish reporter lines makes it an excellent model for the study of the oligogenic mechanisms leading to CHH.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Hipotálamo/fisiologia , Reprodução/fisiologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Modelos Animais
3.
Hum Reprod Update ; 22(3): 358-81, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26715597

RESUMO

BACKGROUND: Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. METHODS: An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. RESULTS: This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. CONCLUSIONS: Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Neurônios/fisiologia , Receptores LHRH/fisiologia , Reprodução/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/análise , Gônadas/metabolismo , Humanos , Hipogonadismo , Hipotálamo , Doenças Ovarianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA