Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 42015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26653140

RESUMO

SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Hepatócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Sumoilação/efeitos dos fármacos , Taninos/isolamento & purificação , Taninos/metabolismo , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica , Hepatócitos/enzimologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID
2.
Comb Chem High Throughput Screen ; 17(4): 333-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24661212

RESUMO

The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.


Assuntos
Antiparasitários/farmacologia , Descoberta de Drogas/organização & administração , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas , Universidades/organização & administração , Academias e Institutos/organização & administração , California , Química Farmacêutica/métodos , Comportamento Cooperativo , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Internet , Terapia de Alvo Molecular , Doenças Negligenciadas/tratamento farmacológico , Canais de Potássio de Domínios Poros em Tandem , Setor Privado , Pesquisa Translacional Biomédica/organização & administração
3.
PLoS Negl Trop Dis ; 6(7): e1736, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860142

RESUMO

BACKGROUND: Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. METHODOLOGY/PRINCIPAL FINDINGS: The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D) values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50) <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50) of 17 nM and was trypanocidal at 40 nM. CONCLUSIONS/SIGNIFICANCE: The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.


Assuntos
Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Simulação de Dinâmica Molecular , Testes de Sensibilidade Parasitária
4.
PLoS Negl Trop Dis ; 5(5): e1023, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21572521

RESUMO

The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼ 2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts.


Assuntos
Antiparasitários/isolamento & purificação , Antiparasitários/metabolismo , Cisteína Proteases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
5.
J Microbiol Methods ; 84(3): 398-405, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21262276

RESUMO

Giardia lamblia is a protozoan parasite that causes widespread gastrointestinal illness. Drugs to treat giardiasis are limited, but efforts to discover new anti-giardial compounds are constrained by the lack of a facile system for cell culture and inhibitor testing. We achieved robust and reproducible growth of G. lamblia in 384-well tissue culture plates in a modified TYI-S-33 medium. A high throughput assay for the screening of potential anti-giardial compounds was developed utilizing the WB strain of G. lamblia and automated optical detection of parasites after growth with tested inhibitors. We screened a library of 1600 known bioactive molecules and identified 12 compounds that inhibited growth of G. lamblia at low- or sub-micromolar concentrations. Our high throughput assay should facilitate evaluation of available chemical libraries for novel drugs to treat giardiasis.


Assuntos
Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Giardia lamblia/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador/métodos , Animais , Giardia lamblia/crescimento & desenvolvimento , Testes de Sensibilidade Parasitária/métodos
6.
Antimicrob Agents Chemother ; 54(8): 3326-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20547819

RESUMO

Chagas' disease, caused by infection with the parasite Trypanosoma cruzi, is the major cause of heart failure in Latin America. Classic clinical manifestations result from the infection of heart muscle cells leading to progressive cardiomyopathy. To ameliorate disease, chemotherapy must eradicate the parasite. Current drugs are ineffective and toxic, and new therapy is a critical need. To expedite drug screening for this neglected disease, we have developed and validated a cell-based, high-throughput assay that can be used with a variety of untransfected T. cruzi isolates and host cells and that simultaneously measures efficacy against the intracellular amastigote stage and toxicity to host cells. T. cruzi-infected muscle cells were incubated in 96-well plates with test compounds. Assay plates were automatically imaged and analyzed based on size differences between the DAPI (4',6-diamidino-2-phenylindole)-stained host cell nuclei and parasite kinetoplasts. A reduction in the ratio of T. cruzi per host cell provided a quantitative measure of parasite growth inhibition, while a decrease in count of the host nuclei indicated compound toxicity. The assay was used to screen a library of clinically approved drugs and identified 55 compounds with activity against T. cruzi. The flexible assay design allows the use of various parasite strains, including clinical isolates with different biological characteristics (e.g., tissue tropism and drug sensitivity), and a broad range of host cells and may even be adapted to screen for inhibitors against other intracellular pathogens. This high-throughput assay will have an important impact in antiparasitic drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/parasitologia , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/parasitologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Hepatócitos/citologia , Hepatócitos/ultraestrutura , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Testes de Sensibilidade Parasitária , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA