Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
Mais filtros

Intervalo de ano de publicação
3.
EJIFCC ; 34(1): 27-41, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124657

RESUMO

Background: Manufacturers evaluate lipemia-induced interference using Intralipid®, but it does not contain all lipoprotein types. The aim of this study was to evaluate lipemiainduced interference in biochemical parameters from endogenous lipemic samples and SMOFlipid® supplemented samples, in order to assess if SMOFlipid® can be used in lipemic interference studies. Methods: Serum pools were supplemented with SMOFlipid® to achieve 800 mg/dL and 1500 mg/dL triglyceride concentration, and analyzed for 25 biochemical parameters both before and after the supplementation. In another independent phase, lipemic serum pools were prepared choosing patient samples of 800 mg/dL and 1500 mg/dL triglyceride concentration. These lipemic serum pools were ultracentrifugated in order to remove lipids. Biochemical parameters were analyzed before and after ultracentrifugation. The bias between SMOFlipid®-supplemented samples and endogenous lipemic samples were compared. The bias between the lipemic and non-lipemic samples were compared with the reference change value. Results: At 800 mg/dL triglyceride concentration, we found that total protein and transferrin had been affected only in endogenous lipemic serum samples. Magnesium and creatinine had been affected only in SMOFlipid®-supplemented samples. At 1500 mg/dL triglyceride concentration, we found that total protein, amylase, ferritin and glucose had lipemic interference only in endogenous lipemic samples, and chloride only in SMOFlipid®-supplemented samples. Conclusions: The use of SMOFlipid®-supplemented samples does not provide suitable data to estimate lipemia-induced interference. Thus, interference studies should be performed using a wide variety of lipemic patient samples that represent the heterogeneity of the lipoprotein particles size.

4.
Clin Cosmet Investig Dermatol ; 16: 1279-1286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228784

RESUMO

Background: Abnormal proliferation of Demodex mites causes a skin disorder called demodicosis and has been linked to rosacea. The development of alternative therapy against Demodex mites is currently required. The ability to kill Demodex mites of Thai herbal essential oils has never been explored. This study aimed to study and compare the in vitro killing effect of Thai herbal essential oils, tea tree oil, and metronidazole 0.75% with ivermectin 1% on D. folliculorum. Materials and Methods: D. folliculorum mites were collected from the wastes of diagnostic standardized skin surface biopsy samples of demodicosis and rosacea patients for the trial. The microscopic evaluation started immediately after the mites were exposed to immersion oil (negative control), Thai herbal essential oils, tea tree oil, metronidazole 0.75%, and ivermectin 1% (positive control). The survival times of ten mites from each test agent were compared. Results: The efficacy of Thai herbal essential oils and other test agents can be arranged in order as follows: lemongrass oil > sweet basil oil > clove oil > tea tree oil > lesser galangal oil > ginger oil, kaffir lime oil, peppermint oil > citronella oil > galangal oil > cajeput oil > ivermectin 1% > metronidazole 0.75%. Conclusion: This current study demonstrated the in vitro killing efficacy on D. folliculorum: Thai herbal essential oils, Tea tree oil > ivermectin 1% > metronidazole 0.75%. Thai herbal essential oils have the potential to be an adjuvant or alternative therapy against Demodex mites. Further in vivo studies are necessary to determine the treatment efficacy and side effects.

5.
Front Physiol ; 13: 991320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479344

RESUMO

Coccidiosis is a major intestinal challenge that causes economic loss to the broiler industry. Two battery cage studies were conducted to evaluate the effect of trace minerals, source and dose of methionine on growth performance and gut health of broilers subjected to Eimeria challenge. Experiment #1 consisted of 9 treatments of 2 × 2 × 2 factorial design + 1 arrangement with main factors of methionine (Met) sources (DL-Met vs. 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa)), total sulfur amino acid (TSAA) levels (high vs. low; ±5% of recommended level), and sources of trace minerals (TM) Zn:Cu:Mn in the form Inorganic trace minerals (ITM) in sulfates (80:20:100ppm) vs. mineral methionine hydroxy-analogue bis-chelate (MMHAC, 40:10:50ppm), each with 8 pens of 10 birds. Experiment #2 consisted of 2 treatments--ITM [ZnSO4:tribasic copper chloride (TBCC):MnSO4 110:125:120ppm] and MMHAC (Zn:Cu:Mn, 40:30:40ppm), each with 36 pens of 10 birds. All birds except for treatment 9 in experiment #1 were orally gavaged with 1x, 4x and 16x recommended dose of coccidiosis vaccine on d0, d7 and d14, respectively. Data were subjected to one-way and/or three-way ANOVA, and means were separated by Fisher's protected LSD test with significance at p ≤ 0.05. In experiment #1, factorial analysis revealed the main effects of TSAA level and TM, but not Met source. High TSAA level improved body weight and cumulative feed intake at 14, 20, and 27d. MMHAC improved body weight at 14, and 27d; feed intake at 14, 20, and 27d; and cumulative FCR at 27d vs. sulfates. One-way ANOVA analysis showed that birds fed MMHAC and high levels of TSAA regardless of Met source had similar body weight as unchallenged birds on d27. In experiment #2, MMHAC improved body weight and cumulative FCR, and reduced jejunal IL-17A gene expression on d28. In summary, in broilers subjected to Eimeria challenge, supplementation of the reduced levels of bis-chelated trace minerals MMHAC improved growth performance compared to high levels of ITM (sulfates or TBCC), which might partially result from better immune response, high levels of TSAA improved growth performance, Met source had no effect. Supplementation of both bis-chelated trace minerals MMHAC and high levels of TSAA could overcome the growth performance challenge issue due to coccidiosis.

6.
Front Physiol ; 13: 948378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267581

RESUMO

Trace mineral minerals Zn, Cu, and Mn play important roles in breeder production and progeny performance. The objective of this study was to determine maternal supplementation of trace mineral minerals on breeder production and progeny growth and development. A total of 540 broiler breeders, Cobb 500 (Slow feathering; 0-66 weeks old) were assigned to one of three treatment groups with the same basal diet and three different supplemental trace minerals: ITM-inorganic trace minerals in sulfates: 100, 16, and 100 ppm of Zn, Cu, and Mn respectively; MMHAC -mineral methionine hydroxy analog chelate: 50, 8, and 50 ppm of bis-chelated MINTREX®Zn, Cu and Mn (Novus International, Inc.), and TMAAC - trace minerals amino acid complex: 50, 8, and 50 ppm of Zn, Cu, and Mn. At 28 weeks of age, eggs from breeder treatments were hatched for progeny trial, 10 pens with 6 males and 6 female birds per pen were fed a common diet with ITM for 45 days. Breeder production, egg quality, progeny growth performance, mRNA expression of gut health associated genes in breeder and progeny chicks were measured. Data were analyzed by one-way ANOVA; means were separated by Fisher's protected LSD test. A p-Value ≤ 0.05 was considered statistically different and 0.1 was considered numerical trend. Breeders on ITM treatment had higher (p < 0.05) body weight (BW), weight gain and lower (p < 0.05) feed conversion ratio (FCR) from 0 to 10 weeks, when compared to birds fed MMHAC. MMHAC significantly improved egg mass by 3 g (p < 0.05) and FCR by 34 points (0.05 < p < 0.1) throughout the reproductive period (26-66 weeks) in comparison to ITM. MMHAC improved (p < 0.01) egg yolk color versus (vs.) ITM and TMAAC in all periods, except 28 weeks, increased (p < 0.01) eggshell thickness and resistance vs. TMAAC at 58 weeks, and reduced (p < 0.05) jejunal NF-κB gene expression vs. TMAAC at 24 weeks. There was a significant reduction in tibial dry matter weight, Seedor index and resistance for the breeders that received MMHAC and/or TMAAC when compared to ITM at 18 weeks. Lower seedor index but numerically wider tibial circumference was seen in hens fed MMHAC at 24 weeks, and wider tibial circumference but lower tibial resistance in hens fed TMAAC at 66 weeks. Maternal supplementation of MMHAC in breeder hens increased (p < 0.0001) BW vs. ITM and TMAAC at hatching, reduced (p < 0.05) feed intake vs. ITM at d14 and d28, and improved (p < 0.01) FCR and performance index vs. TMAAC at d28, reduced (p < 0.01) NF-κB gene expression and increased (p < 0.05) A20 gene expression vs. TMAAC on d0 and vs. ITM on d14, reduced (p < 0.05) TLR2 gene expression vs. ITM on d0 and vs. TMAAC on d14, increased (p < 0.05) MUC2 gene expression vs. both ITM and TMAAC on d45 in progeny jejunum. Overall, these results suggest that supplementation with lower levels of MHA-chelated trace minerals improved breeder production and egg quality and reduced breeder jejunal inflammation while maintaining tibial development in comparison to those receiving higher inorganic mineral supplementation, and it also carried over the benefits to progeny with better growth performance, less jejunal inflammation and better innate immune response and gut barrier function in comparison to ITM and/or TMAAC.

7.
Front Bioeng Biotechnol ; 10: 895289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992337

RESUMO

The use of fetal bovine serum (FBS) in animal cell culture media is widely spread since it provides a broad spectrum of molecules that are known to support cell attachment and growth. However, the harvest and collection procedures of FBS raise ethical concerns and serum is an ill-defined and expensive component. This is especially problematic when it comes to regulatory approval for food applications like cultured meat. The aim of this study is to develop a chemically defined, cost efficient serum-free and animal-free medium that supports the attachment and expansion of bovine myoblasts while maintaining their differentiation capacity. Bovine satellite cells were harvested and isolated from a fresh sample of skeletal muscle tissue and cultured in planar systems. The efficacy of the tested formulations was assessed with metabolic assays and cell counting techniques. Optical microscopy was used to observe cellular morphology and statistical analysis was applied. Based on a comprehensive literature analysis, a defined serum-free medium (SFM) composition was developed consisting of DMEM/F12 as basal medium, supplemented with L-ascorbic acid 2-phosphate, fibronectin, hydrocortisone, GlutaMAX™, albumin, ITS-X, hIL-6, α-linolenic acid, and growth factors such as FGF-2, VEGF, IGF-1, HGF, and PDGF-BB. To our knowledge, this is the first defined serum-free and animal free medium formulation specific for bovine myoblasts to date. We conclude that the SFM formulation supported exponential cell growth up to 97% of the serum-containing golden standard growth medium. All reagents used in this study are chemically defined.

8.
Folia Microbiol (Praha) ; 67(4): 659-669, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384558

RESUMO

Poly(ε-caprolactone; PCL) is an attractive biodegradable polymer that has been increasingly used to solve environmental problems caused by plastic wastes. In the present study, 468 bacterial isolates were recovered from soil samples and screened for PCL degradation activity. Of the isolates, 37 (7.9%) showed PCL depolymerase activity on PCL agar medium, with the highest activity being by isolate S22 which was identified using 16S rRNA and rpoB gene sequencing as Acinetobacter seifertii. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the degradation of PCL films after treatment with A. seifertii S22. The PCL depolymerase activity of A. seifertii S22 relied on the activity of esterase which occurred at an optimum temperature of 30-40 °C. The highest PCL depolymerase activity (35.5 ± 0.7 U/mL) was achieved after culturing A. seifertii S22 for 6 h in mineral salt medium (MSM) containing 0.1% Tween 20 and 0.02% ammonium sulfate as the carbon and nitrogen sources, respectively, which was approximately 20-fold higher than for cultivation in MSM supplemented with 0.1% PCL as sole carbon source. The results suggested that A. seifertii S22 or its enzymes could be used for PCL bioplastic degradation.


Assuntos
Carbono , Poliésteres , Acinetobacter , Biodegradação Ambiental , Caproatos , Lactonas , Poliésteres/metabolismo , RNA Ribossômico 16S/genética
10.
Front Physiol ; 13: 991318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817619

RESUMO

Copper (Cu) is widely used at high levels as growth promoter in poultry, the alternative source of Cu to replace the high level of inorganic Cu at poultry farm remains to be determined. Three floor pen experiments were conducted to evaluate the effects of Cu methionine hydroxy-analogue chelate (Cu-MHAC, MINTREX®Cu, Novus International, Inc.) on growth performance and gut health in broilers in comparison to CuSO4 and/or tribasic copper chloride (TBCC). There were 3 treatments in experiment#1 (0, 30 and 75 ppm Cu-MHAC) and experiment#2 (15 and 30 ppm Cu-MHAC, and 125 ppm CuSO4), and 4 treatments in experiment #3 (15 and 30 ppm Cu-MHAC, 125 ppm CuSO4 and 125 ppm TBCC) with nine replicates pens of 10-13 birds in each treatment. The levels of other minerals were equal among all treatments within each experiment. All birds were orally gavaged with a coccidiosis vaccine at 1x recommended dose on d0 in experiment#1 and #2 and 10x recommended dose on d15 in experiment #3. Data were analyzed by one-way ANOVA, means were separated by Fisher's protected LSD test. A p ≤ 0.05 was considered statistically different. In experiment #1, 30 and 75 ppm Cu-MHAC improved FCR during grower phase, increased jejunal villus height and reduced jejunal crypt depth, 30 ppm Cu-MHAC increased cecal Lactobacillus spp. abundance in 41 days broilers. In experiment #2, compared to CuSO4, 15ppm Cu-MHAC increased cumulative performance index in 28 days broilers, 15 and/or 30 ppm Cu-MHAC improved gut morphometry, and 30 ppm Cu-MHAC reduced the abundance of E. coli and Enterobacteriaceae in cecum in 43 days broilers. In experiment #3, 15 ppm and 30 ppm Cu-MHAC improved FCR vs. CuSO4 during starter phase, reduced the percentage of E. coli of total bacteria vs. TBCC, 30 ppm Cu-MHAC increased the percentages of Lactobacillus acidophilus, Lactobacillus spp. and Clostridium cluster XIVa of total bacteria vs. both CuSO4 and TBCC in the cecum of 27 days broilers. In summary, low doses of Cu-MHAC had comparable growth performance to high dose of TBCC and CuSO4 while improving gut microflora and gut morphometry in broilers subject to coccidiosis vaccination or coccidia challenge, indicating that low doses of bis-chelated Cu could be used as a complimentary strategy to improve animal gut health.

11.
Animals (Basel) ; 11(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827875

RESUMO

This study aimed to investigate the effect of increasing the standardized ileal digestible (SID) total sulfur amino acid to lysine (TSAA:Lys) on the growth performance of nursery pigs raised with or without antibiotics (AGP) and to determine the optimal SID TSAA:Lys in nursery pigs raised without AGP. In Exp. 1, 924 nursery pigs (7.9 ± 1.3 kg), blocked by initial BW and sex, were randomly allotted to one of six treatments, with seven pens per treatment and twenty-two pigs per pen. The treatments were arranged in a 2 × 3 factorial design, with two AGP levels (0 or 50 mg/kg Carbodox) and three levels of SID TSAA:Lys (51.0, 58.5 or 66.0%). In Exp. 2, 990 weaned piglets (5.1 ± 0.9 kg), blocked by initial BW and sex, were randomly allotted to one of five dietary treatments (SID TSAA:Lys at 51, 58, 65, 72 or 79%) in the absence of AGP, with nine pens per treatment and twenty-two pigs per pen. Competing heteroskedastic models including broken-line linear (BLL), broken-line quadratic (BLQ), and quadratic polynomial (QP) were fitted for the growth performance data to estimate the optimal TSAA:Lys. In Exp. 1, AGP supplementation increased (p < 0.05) ADG and ADFI during the 21 d period. Increasing SID TSAA:Lys in the diets with AGP did not affect growth performance; however, increasing SID TSAA:Lys in the diets without AGP resulted in a linear increase (p < 0.05) in ADG and G:F. In Exp. 2, the best-fitting models for ADG and G:F from d 0 to 21 post-weaning were BLL, which yielded the optimal SID TSAA:Lys of 62% and 72%, respectively. The best-fitting models for ADG and G:F from d 21 to 42 post-weaning were BLL, which yielded the optimal SID TSAA:Lys of 59% and 58%, respectively. In conclusion, SID TSAA to Lys requirements under an antibiotic-free feeding regime during the first 21 d post-weaning were 62% and 72% in terms of ADG and G:F, respectively, whereas an SID TSAA:Lys of approximately 58% was required to maximize ADG and G:F for the late nursery phase.

13.
Biol Trace Elem Res ; 199(12): 4582-4592, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33432510

RESUMO

The present study investigated the interactive effects of copper sources and a high level of phytase on growth performance, nutrient digestibility, tissue mineral concentrations, and plasma parameters in nursery pigs. Weaning piglets (N = 192; 6.06 ± 0.99 kg), blocked by body weight, were randomly allotted to 1 of 4 dietary treatments, with 12 pens per treatment and 4 pigs per pen. A basal diet for each phase was formulated to meet nutrient requirements for nursery pigs with the exception that standardized total tract digestibility (STTD) P was reduced by 0.12% and Ca was adjusted to achieve Ca/STTD P = 2.15. The 4 dietary treatments were arranged in a 2 × 2 factorial design, with 2 Cu sources (125 mg/kg Cu from copper methionine hydroxy analogue chelate (Cu-MHAC) or copper sulfate (CuSO4)) and 2 phytase levels (0 or 1500 phytase units (FTU)/kg). Results showed that there was an interaction (P < 0.05) between Cu sources and phytase on ADG during days 0-41. When phytase was not present in the diets (P deficient), there was no difference between the two Cu sources in terms of ADG during days 0-41, whereas with phytase in the diets, Cu-MHAC tended to improve (P < 0.10) ADG during days 0-41 compared with CuSO4. Pigs fed Cu-MHAC had greater apparent total tract digestibility (ATTD) of neutral and acid detergent fiber and STTD of P than those fed CuSO4. Phytase increased (P < 0.05) growth performance, ATTD of Ca and P, and plasma inositol and growth hormone concentrations. In conclusion, Cu-MHAC may be more effective in improving growth rate than CuSO4 when phytase was supplemented at 1500 FTU/kg. Cu-MHAC enhanced fiber and P digestibility regardless of phytase, compared with CuSO4. Phytase addition in P-deficient diets was effective in improving growth performance, Ca and P digestibility, and plasma inositol and growth hormone concentrations.


Assuntos
6-Fitase , Fósforo na Dieta , Ração Animal/análise , Animais , Cobre , Dieta , Suplementos Nutricionais , Digestão , Fezes , Trato Gastrointestinal , Minerais , Nutrientes , Fósforo , Suínos
14.
J Dairy Sci ; 104(2): 1811-1822, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246616

RESUMO

Our objective was to evaluate the lactational responses of dairy cows to methionine provided from 2 ruminally protected sources of methionine activity. Twenty-one Holstein dairy cows [11 primiparous (634 kg of body weight, 140 d in milk) and 10 second-parity (670 kg of body weight, 142 d in milk)] were assigned to a treatment sequence in 4 replicated 5 × 5 Latin squares plus 1 cow, with 14-d periods. Treatments were as follows: control; 7.5 or 15 g/d of a ruminally protected product of 2-hydoxy-4-methylthio-butyric acid (NTP-1401; Novus International Inc., St. Charles, MO); or 7.5 or 15 g/d of a ruminally protected dl-methionine product (Smartamine M; Adisseo, Alpharetta, GA). The diet was predicted to meet metabolizable protein and energy requirements. Diets contained 16.1% crude protein, and the control diet was predicted to be deficient in metabolizable methionine (1.85% of metabolizable protein) but sufficient in lysine (6.8% of metabolizable protein). Feed intake and milk yield were measured on d 11 to 14. Blood was collected on d 14. Dry matter intake, milk yield, energy-corrected milk, milk fat yield and percentage, and efficiencies of milk and energy-corrected milk yield were not affected by treatment. Milk protein percentage and milk protein yield increased linearly with supplementation, without differences between methionine sources or interactions between source and level. Linear regressions of milk protein percentage and milk protein yield against supplement amount within source led to slope ratios (NTP-1401:Smartamine M) of 95% for protein percentage and 84% for protein yield, with no differences between sources for increasing milk protein. Plasma methionine concentrations were increased linearly by methionine supplementation; the increase was greater for Smartamine M than for NTP-1401. Plasma d-methionine was increased only by Smartamine M. Plasma 2-hydoxy-4-methylthio-butyric acid was increased only by NTP-1401. Our data demonstrated that supplementation with these methionine sources can improve milk protein percentage and yield, and the 2 methionine sources did not differ in their effect on lactation performance or milk composition.


Assuntos
Bovinos/metabolismo , Metionina/farmacocinética , Rúmen/metabolismo , Ração Animal/análise , Animais , Disponibilidade Biológica , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Feminino , Lactação/fisiologia , Lisina/administração & dosagem , Metionina/administração & dosagem , Metionina/metabolismo , Leite/química , Leite/metabolismo , Proteínas do Leite/análise , Proteínas do Leite/metabolismo , Necessidades Nutricionais , Paridade , Gravidez
15.
Transl Anim Sci ; 4(4): txaa201, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33354657

RESUMO

Two studies were conducted to determine the effects of a novel Escherichia coli phytase expressed in Pseudomonas fluorescens on growth performance, bone mineralization, and nutrient digestibility in pigs fed corn-soybean meal diets. In experiment 1, 160 nursery pigs (9.79 ± 1.22 kg) were randomly allotted to one of four treatments with 10 pens per treatment and four pigs per pen. Phase I and phase II diets were provided from d 0 to d 14 and d 14 to d 28, respectively. Treatments included: positive control (PC) with all nutrients meeting requirements; negative control (NC) with standardized total tract digestible (STTD) P reduced by 0.15% and 0.14% compared with PC in phase I and phase II, respectively; and NC diets containing 250 or 500 units of phytase (FTU) per kilogram. Results demonstrated that pigs fed PC had greater (P < 0.01) ADG and G:F for the overall experimental period, and greater (P < 0.01) bone ash and P concentrations, compared with pigs fed NC or diets with phytase supplementation. Pigs fed diets containing phytase had greater (P < 0.01) ADG and G:F for the overall experimental period compared with pigs fed the NC diet without phytase, and bone ash and P weights were increased (P < 0.01) as well. In experiment 2, 63 growing barrows (56.25 ± 2.54 kg) were blocked by BW and randomly allotted to one of seven treatments with nine pens per treatment and one pig per pen. A basal corn-soybean meal diet was formulated to meet nutrient requirements for growing pigs with the exception that STTD P was reduced by 0.18% compared with the requirement, and Ca was included to achieve a Ca:STTD P ratio of 2.15. Six additional diets were formulated by adding 250, 500, 750, 1,000, 1,500, or 2,000 FTU/kg of phytase to the basal diet. Pigs were fed experimental diets for 12 d with 7 d of adaptation and 5 d of fecal sample collection. Results indicated that there was a linear (P < 0.01) increase in apparent total tract digestibility of ash and ether extract, and STTD of Ca and P also increased (linear, P < 0.05) in response to increasing doses of phytase. Increasing phytase levels in the diets resulted in increase (quadratic, P < 0.05) in apparent ileal digestibility of Arg, His, Ile, Lys, Trp, Asp, and Glu. In conclusion, the novel E. coli phytase was effective in increasing growth performance, bone mineralization, and Ca and P digestibility in pigs fed corn-soybean meal-based diets. Results also indicated that this phytase had the potential to enhance the digestibility of fat and certain AA.

16.
J Anim Sci ; 98(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841352

RESUMO

The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-ß1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-ß, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.


Assuntos
Imunoglobulinas/sangue , Metionina/análogos & derivados , Minerais/metabolismo , Suínos/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Lactação , Metionina/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Paridade , Gravidez , Suínos/genética , Suínos/crescimento & desenvolvimento , Oligoelementos/farmacologia , Desmame
17.
Transl Anim Sci ; 4(2): txaa083, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705073

RESUMO

This study investigated the interactive effects of zinc (Zn) and copper (Cu) sources and phytase on growth performance, oxidative status, mineral digestibility, tissue mineral concentrations, and gut morphology in nursery pigs. A total of 288 weaning barrows [body weight (BW) = 5.71 ± 0.81 kg], blocked by initial BW, were randomly allotted to one of eight dietary treatments, with nine pens per treatment and four pigs per pen. The eight dietary treatments were arranged in 2 × 2 × 2 factorial design, with two Zn sources [2,000, 2,000, and 100 mg/kg Zn from zinc oxide (ZnO) during phase 1 (days 1-14) and phase 2 (days 15-28), and phase 3 (days 29-42), respectively; 100 mg/kg Zn from zinc methionine hydroxy analogue chelate (Zn-MHAC) from phases 1 to 3], two Cu sources [150, 80, and 80 mg/kg Cu from copper sulfate (CuSO4) or copper methionine hydroxy analogue chelate (Cu-MHAC) during phases 1-3, respectively], and two phytase inclusion levels (0 or 500 FTU/kg). Results showed that ZnO supplementation at 2,000 mg/kg Zn significantly increased average daily feed intake (ADFI; P = 0.01) and average daily gain (ADG; P = 0.03) during phase 1 compared to Zn-MHAC group; however, Zn-MHAC supplementation tended (P = 0.06) to improve gain to feed ratio (G:F) during phase 2 compared to ZnO group. There were no differences (P > 0.10) between ZnO and Zn-MHAC groups in terms of ADG, ADFI, and G:F during the entire nursery period. Compared with CuSO4, Cu-MHAC tended to increase ADG (P = 0.07) and G:F (P = 0.08) during the entire nursery period. Phytase supplementation significantly increased ADG (P < 0.01), ADFI (P < 0.01), and G:F (P < 0.01) during the entire nursery period compared with no phytase supplementation. There was a significant interaction (P < 0.01) between Zn source and phytase on standardized total tract digestibility (STTD) of phosphorus (P), whereas there was no interaction (P = 0.21) between Cu sources and phytase on STTD of P. However, there was a significant interaction between Cu sources and phytase on calcium (Ca; P = 0.02) and P (P = 0.03) concentrations in metacarpal bones and G:F in phase 2 (P = 0.09). Furthermore, pigs fed diets containing Zn-MHAC tended to have lower ileum villus width (P = 0.07), compared with those fed diets containing ZnO, and pigs fed diets containing Cu-MHAC tended to have lower plasma malondialdehyde concentration (P = 0.10) compared with those fed diets containing CuSO4. In conclusion, under the conditions of the current study, ZnO supplementation at 2,000 mg/kg Zn was only effective in the first 2 wk postweaning, whereas Zn-MHAC supplementation at 100 mg/kg Zn could achieve better feed efficiency during phase 2 compared to pharmacological levels of ZnO, therefore, leading to no difference of growth performance in the entire nursery period. Low levels of Zn-MHAC may improve phytase efficacy on degrading phytate P compared to pharmacological levels of ZnO. Cu-MHAC may be more effective to promote growth compared to CuSO4, which may be partially driven by reduced oxidative stress. Results also indicated that Cu-MHAC might exert a synergistic effect with phytase on improving feed efficiency and bone mineralization.

20.
Animal ; 13(5): 1000-1008, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30322418

RESUMO

Trace minerals have important roles in immune function and oxidative metabolism; however, little is known about the relationships between supplementation level and source with outcomes in dairy cattle. Multiparous Holstein cows (n=48) beginning at 60 to 140 days in milk were utilized to determine the effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide (LPS) challenge. Cows were fed a basal diet meeting National Research Council (NRC) requirements except for no added zinc (Zn), copper (Cu) or manganese (Mn). After a 4-week preliminary period, cows were assigned to one of four topdress treatments in a randomized complete block design with a 2×2 factorial arrangement of treatments: (1) NRC inorganic (NRC levels using inorganic (sulfate-based) trace mineral supplements only); (2) NRC organic (NRC levels using organic trace mineral supplements (metals chelated to 2-hydroxy-4-(methythio)-butanoic acid); (3) commercial inorganic (approximately 2×NRC levels using inorganic trace mineral supplements only; and (4) commercial organic (commercial levels using organic trace mineral supplements only). Cows were fed the respective mineral treatments for 6 weeks. Treatment effects were level, source and their interaction. Activities of super oxide dismutase and glutathione peroxidase in erythrocyte lysate and concentrations of thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) in plasma were measured as indices of oxidative metabolism. Effects of treatment on those indices were not significant when evaluated across the entire experimental period. Plasma immunoglobulin G level was higher in cows supplemented with organic trace minerals over the entire treatment period; responses assessed as differences of before and after Escherichia coli J5 bacterin vaccination at the end of week 2 of treatment period were not significant. Cows were administered an intramammary LPS challenge during week 5; during week 6 cows fed commercial levels of Zn, Cu and Mn tended to have higher plasma TAC and cows fed organic sources had decreased plasma TBARS. After the LPS challenge, the extent and pattern of response of plasma cortisol concentrations and clinical indices (rectal temperature and heart rate) were not affected by trace mineral level and source. Productive performance including dry matter intake and milk yield and composition were not affected by treatment. Overall, results suggest that the varying level and source of dietary trace minerals do not have significant short-term effects on oxidative metabolism indices and clinical responses to intramammary LPS challenge in midlactation cows.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Leite/metabolismo , Minerais/administração & dosagem , Oligoelementos/administração & dosagem , Ração Animal , Animais , Antioxidantes/metabolismo , Cobre/administração & dosagem , Dieta/veterinária , Feminino , Lactação/efeitos dos fármacos , Lipopolissacarídeos/administração & dosagem , Manganês/administração & dosagem , Oxirredução , Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA