Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37567646

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Óxido de Zinco/toxicidade , Ratos Wistar , Catalase/metabolismo , Quercetina/farmacologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dano ao DNA , Superóxido Dismutase/metabolismo , Aberrações Cromossômicas/induzido quimicamente
2.
Sci Rep ; 9(1): 6912, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061500

RESUMO

Iron oxide nanoparticles (IONPs) are known to induce cytotoxicity in various cancer cell lines through the generation of reactive oxygen species (ROS). However, the studies on its potential to induce toxicity in normal cell lines and in vivo system are limited and ambiguity still exists. Additionally, small molecules are known to interact with the DNA and cause damage to the DNA. The present study is designed to evaluate the potential interaction of IONPs with DNA along with their other toxicological effects and subsequent attenuation by thymoquinone both in vitro (primary lymphocytes) and in vivo (Wistar rats). IONPs were characterized by TEM, SEM-EDS, and XRD. The results from DNA interaction studies showed that IONPs formed a complex with DNA and also got intercalated between the base pairs of the DNA. The decrease in percent cell viability of rat's lymphocytes was observed along with an increase in ROS generation in a dose-dependent manner (50, 100, 200, 400 and 800 µg/ml of IONPs). The genetic damage in in vivo might be due to the generation of ROS as depletion in anti-enzymatic activity was observed along with an increase in lipid peroxidation in a dose-dependent manner (25, 50, 100 mg/kg of IONPs). Interestingly, supplementation of thymoquinone in combination with IONPs has significantly (P < 0.05) attenuated the genetic and oxidative damage in a dose-dependent manner both in vitro and in vivo. It can be concluded that thymoquinone has the potential to attenuate the oxidative stress and genetic toxicity in vitro and in vivo.


Assuntos
Benzoquinonas/farmacologia , DNA/metabolismo , Compostos Férricos/química , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Compostos Férricos/antagonistas & inibidores , Compostos Férricos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA