Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682855

RESUMO

Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-ß.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias Pulmonares , Animais , Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Camundongos , Oxilipinas/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163649

RESUMO

Yin-Yang transcription factor 1 (YY1) is involved in tumor progression, metastasis and has been shown to be elevated in different cancers, including leukemia. The regulatory mechanism underlying YY1 expression in leukemia is still not understood. Bioinformatics analysis reveal three Hypoxia-inducible factor 1-alpha (HIF-1α) putative binding sites in the YY1 promoter region. The regulation of YY1 by HIF-1α in leukemia was analyzed. Mutation of the putative YY1 binding sites in a reporter system containing the HIF-1α promoter region and CHIP analysis confirmed that these sites are important for YY1 regulation. Leukemia cell lines showed that both proteins HIF-1α and YY1 are co-expressed under hypoxia. In addition, the expression of mRNA of YY1 was increased after 3 h of hypoxia conditions and affect several target genes expression. In contrast, chemical inhibition of HIF-1α induces downregulation of YY1 and sensitizes cells to chemotherapeutic drugs. The clinical implications of HIF-1α in the regulation of YY1 were investigated by evaluation of expression of HIF-1α and YY1 in 108 peripheral blood samples and by RT-PCR in 46 bone marrow samples of patients with pediatric acute lymphoblastic leukemia (ALL). We found that the expression of HIF-1α positively correlates with YY1 expression in those patients. This is consistent with bioinformatic analyses of several databases. Our findings demonstrate for the first time that YY1 can be transcriptionally regulated by HIF-1α, and a correlation between HIF-1α expression and YY1 was found in ALL clinical samples. Hence, HIF-1α and YY1 may be possible therapeutic target and/or biomarkers of ALL.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fator de Transcrição YY1/metabolismo , Adolescente , Linhagem Celular Tumoral , Criança , Pré-Escolar , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Recém-Nascido
3.
Pediatr Hematol Oncol ; 38(5): 456-470, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33900899

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, constituting 80% of all acute leukemias in minors. Despite the increase in the success of therapies, disease-free survival is over 80% in most cases. For the remaining 20% of patients, new strategies are needed to allow us to know and select those at greatest risk of relapse. We evaluated by immunohistochemistry the expression of the transcription factor YY1 and found that it is overexpressed in peripheral blood leukemia cells of pediatric patients with ALL with Pro-B and T phenotype compared to control samples. Over expression of YY1 was associated with a significantly lower chance of survival. We also evaluated by RT-PCR in bone marrow samples from ALL pediatric patients the association of YY1 expression with the percentage of blasts. High levels of YY1 were present in samples with higher percent of blasts in these patients. In addition, ALL pediatric patients with a poor response to therapy had higher levels at the nuclear level of YY1 than those who responded well to chemotherapy. In conclusion, our data suggest that YY1 could serve in pediatric ALL as markers of evolution and response for this disease, mainly in patients with pro-B and T immunophenotype. It is also suggested that YY1 is implicated in the expanse of blast in these patients.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regulação para Cima , Fator de Transcrição YY1/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Imunofenotipagem , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Prognóstico , Fator de Transcrição YY1/análise
4.
Leuk Lymphoma ; 59(11): 2628-2638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29616858

RESUMO

Resistance to chemotherapy hinders the successful treatment of acute lymphoblastic leukemia (ALL). The multi-drug resistance-1 (MDR1/ABCB1) gene encodes P-glycoprotein (P-gp), which plays an important role in chemoresistance; however, its transcriptional regulation remains unclear. We investigated the role of YY1 in the regulation of MDR1 and its relation to ALL outcomes. Analysis of the MDR1 promoter revealed four putative YY1-binding sites, which we analyzed using a reporter system and ChIP analysis. YY1 silencing resulted in the inhibition of MDR1 expression and function. The clinical roles of YY1 and MDR1 expression were evaluated in children with ALL. Expression of both proteins was increased in ALL patients compared to controls. We identified a positive correlation between YY1 and MDR1 expression. High levels of YY1 were associated with decreased overall survival. Our results demonstrated that YY1 regulates the transcription of MDR1. Therefore, YY1 may serve as a useful prognostic and/or therapeutic target.


Assuntos
Biomarcadores Tumorais/análise , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição YY1/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adolescente , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Proliferação de Células , Criança , Pré-Escolar , Estudos de Coortes , Etoposídeo/farmacologia , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Regiões Promotoras Genéticas , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator de Transcrição YY1/genética
5.
Mol Med Rep ; 10(5): 2279-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174820

RESUMO

Prostate carcinoma (PCa) is one of the most common cancers in men. Prostate-specific antigen (PSA) has been widely used to predict the outcome of PCa and screening with PSA has resulted in a decline in mortality. However, PSA is not an optimal prognostic tool as its sensitivity may be too low to reduce morbidity and mortality. Consequently, there is a demand for additional robust biomarkers for prostate cancer. Death receptor 5 (DR5) has been implicated in the prognosis of several cancers and it has been previously shown that it is negatively regulated by Yin Yang 1 (YY1) in prostate cancer cell lines. The present study investigated the clinical significance of DR5 expression in a prostate cancer patient cohort and its correlation with YY1 expression. Immunohistochemical analysis of protein expression distribution was performed using tissue microarray constructs from 54 primary PCa and 39 prostatic intraepithelial neoplasia (PIN) specimens. DR5 expression was dramatically reduced as a function of higher tumor grade. By contrast, YY1 expression was elevated in PCa tumors as compared with that in PIN, and was increased with higher tumor grade. DR5 had an inverse correlation with YY1 expression. Bioinformatic analyses corroborated these data. The present findings suggested that DR5 and YY1 expression levels may serve as progression biomarkers for prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasias da Próstata/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Progressão da Doença , Expressão Gênica , Humanos , Masculino , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Análise Serial de Tecidos , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA