Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1146, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212400

RESUMO

A supercritical CO2 method was optimized to recover naringenin-rich extract from Mexican oregano (Lippia graveolens), a flavanone with high antioxidant and anti-inflammatory activity. The effect of the extraction parameters like pressure, temperature, and co-solvent on naringenin concentration was evaluated. We used response surface methodology to optimize the naringenin extraction from oregano; the chemical composition by UPLC-MS of the optimized extract and the effect of simulated gastrointestinal digestion on its antioxidant capacity and total phenolic content were also evaluated. The optimum conditions were 58.4 °C and 12.46% co-solvent (ethanol), with a pressure of 166 bar, obtaining a naringenin content of 46.59 mg/g extract. Also, supercritical optimized extracts yielded high quantities of cirsimaritin, quercetin, phloridzin, apigenin, and luteolin. The results indicated that the naringenin-rich extract obtained at optimized conditions had higher total phenolic content, antioxidant capacity by TEAC and ORAC, and flavonoid content, compared with the methanolic extract, and the simulated gastrointestinal digestion reduced all these values.


Assuntos
Flavanonas , Lippia , Origanum , Antioxidantes/química , Lippia/química , Origanum/química , Dióxido de Carbono , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Fenóis , Solventes/química , Digestão
2.
Plants (Basel) ; 12(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514343

RESUMO

Plants of the Phoradendron genus have been traditionally used for their lipid- and glucose-lowering effects. However, the compounds responsible for these effects and the overall chemical profile of these plants have not been thoroughly investigated. We aimed to characterize the metabolome of leaves, stems, and aerial parts of the Phoradendron brachystachyum plant. We used mass spectrometry and colorimetric screening techniques (with various solvents) to identify and characterize the metabolites present. We also evaluated the antioxidant (FRAP, ORAC, TEAC, and DPPH assays) and inhibitory effects on pancreatic lipase and α-glucosidase enzymes of hydrophilic extracts. Furthermore, we compared the molecular fingerprints between the identified metabolites and FDA-approved drugs to gain insights into the metabolites that might be responsible for the observed effects on enzymes. Our findings revealed the presence of 59 putative metabolites, primarily flavonoids. However, we also hint at the presence of peptide and carbohydrate derivatives. The leaf extracts demonstrated the most promising metrics across all assays, exhibiting strong antioxidant and enzyme inhibitory effects as well as high levels of phenolic compounds, flavonoids, and tannins. Fingerprint analysis suggested potential peptide and carbohydrate metabolites as pancreatic lipase and α-glucosidase inhibitors. Overall, our study provides evidence on specific metabolites in Phoradendron brachystachyum that could be responsible for the therapeutic effects noted in obese and type 2 diabetes subjects.

3.
Plant Foods Hum Nutr ; 78(1): 109-116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36350416

RESUMO

The aim of this study was to explore the effect of capsaicin and particular phenolic compounds profile from cellulase assisted extracts of Habanero (Capsicum chinense) chili pepper seeds (CPS) on the concentration of cytokines (IL-2, IL-6, TNF-α, IL-1ß) in murine macrophages (RAW 264.7) stimulated with lipopolysaccharides (LPS). Capsaicin was quantified by HPLC-DAD, and the phenolic profile was determined by UPLC-MS-QqQ. Anti-inflammatory activity was evaluated by Mouse Cytokine/Chemokine Magnetic Bead Panel 96-well plate assay. Among the 15 different phenolics found in CPS extracts obtained at 120 or 150 min of maceration with 2,500 UI/L at 30 ºC or 45 ºC in a 1:15 (w:v) proportion, the most abundant was vanillic acid (7.97-12.66 µg/g). The extract obtained at 30 ºC and 120 min, showed similar effects than the observed for synthetic anti-inflammatory drugs indomethacin and dexamethasone, and capsaicin standard. Beyond capsaicin, salicylic, protocatechuic and trans-cinnamic acids as well as vanillin in CPS extracts were correlated with the anti-inflammatory effect. On the other hand, capsaicin and chlorogenic acid contents were potential immunostimulants whose concentration varied depending on the cellulase treatment time.


Assuntos
Capsicum , Celulases , Camundongos , Animais , Capsaicina , Cromatografia Líquida , Frutas/química , Espectrometria de Massas em Tandem , Sementes/química , Anti-Inflamatórios , Extratos Vegetais , Cânfora , Mentol , Fenóis
4.
Front Nutr ; 9: 878306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669072

RESUMO

Medicinal plants possess natural compounds that can be used as an alternative for synthetic medicines that may cause long-term side effects on patients such as neurocognitive effects, muscular and hepatic toxicity. Metabolic Syndrome is associated with increased risk of several diseases such as diabetes, cardiovascular disease, dyslipidemia, and hypertension thus, becoming the greatest challenge as a growing public health concern worldwide. Latin-American countries possess a wide diversity of medicinal plants that have been used to treat different health conditions since pre-Hispanic times. Eryngium spp. has been studied due to their beneficial properties mainly to treat diabetes, dyslipidemia, blood pressure, and digestive problems. This review gives an update mainly on the pharmacological activities of the Eryngium spp., summarizing the biological activities and plausible mechanism of action of their bioactive components toward metabolic syndrome. For instance, flavonoids and tannins proved to increase the levels of HDL and reduced the levels of VLDL, LDL. On the other hand, phenolic acids improved glucose metabolism through the inhibition of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase (G6Pase) and reestablished the impaired activity of enzymes related to glucose oxidation and glycogen synthesis. The terpenes and sesquiterpenes like ß-farnese, ß-pinene, and calamenene exhibited a protective effect by reducing the oxidizing damage by the regulation of the Reactive Oxygen Species (ROS). Saponins controlled the dyslipidemia by reducing the serum concentrations of lipids, triglycerides and total cholesterol. Finally, the aerial parts of Eryngium had the capacity of inhibiting dietary carbohydrate digestive enzymes, thus controlling glucose levels. The Eryngium plant is normally consumed as an infusion to obtain the benefits of the plants, however novel technologies such as cavitation, ultrasound assisted, microwave assisted, and supercritical fluid have been applied to improve the extraction yields and selectivity of bioactive compounds. The common treatment to control diabetic dyslipidemia are synthetic medicines such as metformin and ezetimibe, which allows the regulation of glucose, cholesterol and insulin resistance. However, patients that take these medications may present side effects such as muscular toxicity, hepatic toxicity, neurocognitive effects, just to name a few. More studies regarding the efficacy and safety of the use of traditional medicinal herbs are required. However, these materials may be used in the treatment of diabetes related conditions to ensure life quality and reduce side effects among the diabetic population.

5.
Pharmaceutics ; 14(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057087

RESUMO

Nanofibers have emerged as a potential novel platform due to their physicochemical properties for healthcare applications. Nanofibers' advantages rely on their high specific surface-area-to-volume and highly porous mesh. Their peculiar assembly allows cell accommodation, nutrient infiltration, gas exchange, waste excretion, high drug release rate, and stable structure. This review provided comprehensive information on the design and development of natural-based polymer nanofibers with the incorporation of herbal medicines for the treatment of common diseases and their in vivo studies. Natural and synthetic polymers have been widely used for the fabrication of nanofibers capable of mimicking extracellular matrix structure. Among them, natural polymers are preferred because of their biocompatibility, biodegradability, and similarity with extracellular matrix proteins. Herbal bioactive compounds from natural extracts have raised special interest due to their prominent beneficial properties in healthcare. Nanofiber properties allow these systems to serve as bioactive compound carriers to generate functional matrices with antimicrobial, anti-inflammatory, antioxidant, antiseptic, anti-viral, and other properties which have been studied in vitro and in vivo, mostly to prove their wound healing capacity and anti-inflammation properties.

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835912

RESUMO

The global market for plant-derived bioactive compounds is growing significantly. The use of plant secondary metabolites has been reported to be used for the prevention of chronic diseases. Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots. Carrot samples were immersed in different concentrations (0, 5, 10, 20, or 40 mg/L) of each of five types of silver nanoparticles (AgNPs) for 3 min. Spectrophotometric methods measured the total phenolic compounds and the antioxidant capacity. The individual phenolic compounds were quantified by High Performance Liquid Chromatography (HPLC) and identified by -mass spectrometry (HPLC-MS). The five types of AgNPs could significantly increase the antioxidant capacity of carrots' tissue in a dose-dependent manner. An amount of 20 mg/L of type 2 and 5 silver nanoparticle formulations increased the antioxidant capacity 3.3-fold and 4.1-fold, respectively. The phenolic compounds that significantly increased their content after the AgNP treatment were chlorogenic acid, 3-O-caffeoylquinic acid, and 5'-caffeoylquinic acid. The increment of each compound depended on the dose and the type of the used AgNPs. The exogenous application of Argovit® AgNPs works like controlled abiotic stress and produces high-value secondary bioactive compounds in carrot.

7.
Food Chem ; 365: 130528, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34325350

RESUMO

Mango bagasse (MB) is an agro-industrial by-product rich in bioactive polyphenols with potential application as a functional ingredient. This study aimed to delineate the metabolic fate of monomeric/polymeric MB polyphenols subjected to simulated gastrointestinal digestion. The main identified compounds by LC/MS-TOF-ESI were phenolic acids [gallic acid (GA) and derivates, and chlorogenic acid], gallotannins and derivatives [di-GA (DA) and 3GG-to-8GG], benzophenones [galloylated maclurins (MGH, MDH)], flavonoids [Quercetin (Quer) and (QuerH)] and xanthones [mangiferin isomers]. The bioaccessibility depended on the polyphenols' structure, being Quer, 5G to 8G the main drivers. The results suggested that the gastrointestinal fate of MB polyphenols is mainly governed by benzophenones and gallotannins degalloylation and spontaneous xanthone isomerization in vitro to sustain GA bioaccessibility.


Assuntos
Mangifera , Antioxidantes , Celulose , Extratos Vegetais , Polifenóis
8.
Chem Biol Interact ; 310: 108734, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276661

RESUMO

This work aimed to evaluate the mechanisms involved in the apoptosis induction of isorhamnetin-3-O-glucosyl-pentoside (IGP) in metastatic human colon cancer cells (HT-29). To achieve this, we assessed phosphatidylserine (PS) exposure, cell membrane disruption, chromatin condensation, cell cycle alterations, mitochondrial damage, ROS production, and caspase-dependence on cell death. Our results showed that IGP induced cell death on HT-29 cells through PS exposure (48%) and membrane permeabilization (30%) as well as nuclear condensation (54%) compared with control cells. Moreover, IGP treatment induced cell cycle arrest in G2/M phase. Bax/Bcl-2 ratio increased and the loss of mitochondrial membrane potential (63%) was observed in IGP-treated cells. Finally, as apoptosis is a caspase-dependent cell death mechanism, we used a pancaspase-inhibitor (Q-VD-OPh) to demonstrate that the cell death induced by IGP was caspase-dependent. Overall these results indicated that IGP induced apoptosis through caspase-dependent mitochondrial damage in HT-29 colon cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Glicosídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Opuntia/química , Quercetina/análogos & derivados , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Flavonóis , Glicosídeos/isolamento & purificação , Glicosídeos/uso terapêutico , Células HT29 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/patologia , Extratos Vegetais/farmacologia , Quercetina/isolamento & purificação , Quercetina/farmacologia , Quercetina/uso terapêutico
9.
Food Res Int ; 116: 676-686, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716995

RESUMO

Different oregano species have been traditionally used as infusions in folk medicine. Oregano medicinal properties, such as antioxidant and anti-inflammatory, have been partially attributed to its polyphenolic content. However, information regarding bioaccessibility of oregano polyphenols is limited. Cell-based antioxidant activity, and in vitro hypoglycemic, and hypolipidemic properties of polyphenolic extracts from three species of oregano species, namely, Hedeoma patens (HP), Lippia graveolens (LG) and Lippia palmeri (LP), subjected to simulated gastrointestinal digestion were evaluated. LC-TOF-MS analysis of HP, LG and LP allowed the identification of 9 flavonoids and 6 hydroxycinnamic acid derivatives with nutraceutical significance. Oregano polyphenolic extracts and digests from HP, LG, and LP exhibited cellular antioxidant capacity, hypoglycemic and hypolipidemic properties. Altogether, our results suggest that HP, LG and LP polyphenols exhibit potential for use as hypoglycemic, hypolipidemic, and antioxidant agents.


Assuntos
Antioxidantes/farmacologia , Digestão , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipolipemiantes/farmacologia , Lipase/antagonistas & inibidores , Origanum/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antioxidantes/isolamento & purificação , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Ácido Gástrico/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Hipolipemiantes/isolamento & purificação , Secreções Intestinais/química , Lipase/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
10.
J Sci Food Agric ; 99(7): 3481-3489, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30623436

RESUMO

BACKGROUND: Mango bark is an important agro-industrial residue from mango pruning. In traditional medicine, the aqueous extract from mango bark (MBE) has been used in ethnomedicine for the treatment of many diseases. However, there is scarce information using cellular models to evaluate the potential use of this plant material for human consumption. In this study, the phenolic content from the MBE from four varieties (Kent, Keitt, Ataulfo and Tommy Atkins) was analyzed by high-performance liquid chromatography coupled to photodiode array detector (HPLC-DAD) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/MS-TOF). Additionally, the cellular antioxidant activity of the MBE from the four mango varieties were compared. Finally, the intestinal permeability of the main polyphenols found in the MBE (mangiferin and gallic acid) was evaluated. RESULTS: Mangiferin and gallic acid were the main constituents in the MBE from the four mango varieties. Furthermore, the Ataulfo variety showed the highest cellular antioxidant activity (67%) at the concentration of 100 µg mL−1 . The intestinal permeability of mangiferin present in the bark extracts was 3- to 4.8-fold higher than those of mangiferin as standard, whereas the intestinal permeability of gallic acid varied among the tested extracts. CONCLUSION: MBE has the potential to exert antioxidant activity at the cellular level and can have an impact on human health. It may also be a good source for the extraction of polyphenols mainly mangiferin.


Assuntos
Antioxidantes/metabolismo , Mucosa Intestinal/metabolismo , Mangifera/química , Fenóis/metabolismo , Casca de Planta/química , Extratos Vegetais/metabolismo , Antioxidantes/química , Células CACO-2 , Ácido Gálico/análise , Ácido Gálico/metabolismo , Humanos , Mangifera/classificação , Fenóis/química , Extratos Vegetais/química , Xantonas/análise , Xantonas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-30046343

RESUMO

Regulating activities of α-amylase and α-glucosidase through the use of specific inhibitors is a main strategy for controlling type 2 diabetes. Smilax aristolochiifolia root decoctions are traditionally used in Mexico as hypoglycemic and for weight loss, but the active principles and mechanisms underlying such putative metabolic effects are yet unknown. Here, we isolated the major bioactive compounds from a hydroethanolic extract of S. aristolochiifolia root by fast centrifugal partition chromatography and evaluated their effects against pancreatic α-amylase and yeast α-glucosidase. A chlorogenic acid-rich fraction (CAF) inhibited α-amylase activity with an IC50 value of 59.28 µg/mL in an uncompetitive manner and α-glucosidase activity with an IC50 value of 9.27 µg/mL in a noncompetitive mode. Also, an astilbin-rich fraction (ABF) inhibited α-glucosidase activity with an IC50 value of 12.30 µg/mL, in a noncompetitive manner. CAF inhibition α-amylase was as active as acarbose while both CAF and ABF were 50-fold more potent inhibitors of α-glucosidase than acarbose. The molecular docking results of chlorogenic acid and astilbin with α-amylase and α-glucosidase enzymes correlated with the inhibition mechanisms suggested by enzymatic assays. Our results prove that S. aristolochiifolia roots contain chlorogenic acid and astilbin, which inhibit carbohydrates-hydrolyzing enzymes, suggesting a new mechanism for the hypoglycemic effect reported for this plant.

12.
Int J Mol Sci ; 19(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419800

RESUMO

Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10-6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10-6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.


Assuntos
Antioxidantes/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mangifera/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Permeabilidade , Fenóis/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
13.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829356

RESUMO

Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp(AP-BL)) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp(AP-BL) values than triglycosides. Sugar substituents affected the Papp(AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.


Assuntos
Glicosídeos/farmacocinética , Mucosa Intestinal/metabolismo , Opuntia/química , Extratos Vegetais/farmacocinética , Quercetina/análogos & derivados , Animais , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Glicosídeos/química , Humanos , Estrutura Molecular , Permeabilidade , Extratos Vegetais/química , Quercetina/química , Quercetina/farmacocinética , Ratos , Reprodutibilidade dos Testes
14.
Curr Top Med Chem ; 15(23): 2456-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088354

RESUMO

Diabetes is a chronic disease that affects more than 387 million people worldwide. About 20% of patients diagnosed with diabetes develop diabetic foot ulcerations (DFU). Standard treatment of DFU includes wound debridement, infection control, revascularization and, in general, the acceleration of the healing process. Topical ointments containing flavonoids exert beneficial effects in wound healing process. Flavonoids increase the migration and proliferation of fibroblasts and collagen synthesis. Furthermore, most flavonoids exert antibacterial and astringent activities that help in infection control. Additionally, flavonoids possess antioxidant and anti-inflammatory activities reducing the reactive oxygen species and modulating the inflammatory pathways, respectively. Bioactivity of flavonoids can vary according to source, chemical structure and glycosylation pattern. In summary, topical application of flavonoids reduces epithelialization and wound closure time of DFU in diabetic patients.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Pé Diabético/tratamento farmacológico , Flavonoides/uso terapêutico , Glicosídeos/uso terapêutico , Cicatrização/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Pé Diabético/terapia , Flavonoides/administração & dosagem , Flavonoides/isolamento & purificação , Glicosídeos/administração & dosagem , Glicosídeos/isolamento & purificação , Plantas Medicinais/química , Resultado do Tratamento
15.
Biomed Res Int ; 2015: 847320, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821823

RESUMO

Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.


Assuntos
Glicosídeos/administração & dosagem , Opuntia/química , Otite Externa/tratamento farmacológico , Otite Externa/imunologia , Extratos Vegetais/administração & dosagem , Quercetina/análogos & derivados , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Citocinas/imunologia , Relação Dose-Resposta a Droga , Glicosídeos/química , Masculino , Extratos Vegetais/química , Quercetina/administração & dosagem , Quercetina/química , Ratos , Ratos Wistar , Resultado do Tratamento
16.
Food Funct ; 6(3): 805-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25588195

RESUMO

A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Suplementos Nutricionais , Glicosídeos/uso terapêutico , Obesidade/dietoterapia , Opuntia/química , Extratos Vegetais/uso terapêutico , Quercetina/análogos & derivados , Animais , Fármacos Antiobesidade/análise , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Regulação da Expressão Gênica , Transportador de Glucose Tipo 2/agonistas , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Glicosídeos/administração & dosagem , Glicosídeos/análise , Glicosídeos/isolamento & purificação , Hiperglicemia/etiologia , Hiperglicemia/prevenção & controle , Hiperlipidemias/etiologia , Hiperlipidemias/prevenção & controle , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Caules de Planta/química , Quercetina/administração & dosagem , Quercetina/análise , Quercetina/isolamento & purificação , Quercetina/uso terapêutico , Distribuição Aleatória , Ratos Wistar , Técnicas de Cultura de Tecidos
17.
Plant Foods Hum Nutr ; 69(4): 331-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25186940

RESUMO

(OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 µg/mL) and against Caco2 (8.2 ± 0.3 µg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.


Assuntos
Adenocarcinoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Glicosídeos/uso terapêutico , Opuntia/química , Fitoterapia , Quercetina/análogos & derivados , Adenocarcinoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Células CACO-2 , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Colo/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glicosídeos/farmacologia , Células HT29 , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA