Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805637

RESUMO

Mycotoxins are naturally occurring toxins that can affect livestock health and performance upon consumption of contaminated feedstuffs. To mitigate the negative effects of mycotoxins, sequestering agents, adsorbents, or binders can be included to feed to interact with toxins, aiding their passage through the gastrointestinal tract (GI) and reducing their bioavailability. The parietal cell wall components of Saccharomyces cerevisiae have been found to interact in vitro with mycotoxins, such as, but not limited to, aflatoxin B1 (AFB1), and to improve animal performance when added to contaminated diets in vivo. The present study aimed to examine the pharmacokinetics of the absorption of radiolabeled AFB1 in rats in the presence of a yeast cell wall-based adsorbent (YCW) compared with that in the presence of the clay-based binder hydrated sodium calcium aluminosilicate (HSCAS). The results of the initial pharmacokinetic analysis showed that the absorption process across the GI tract was relatively slow, occurring over a matter of hours rather than minutes. The inclusion of mycotoxin binders increased the recovery of radiolabeled AFB1 in the small intestine, cecum, and colon at 5 and 10 h, revealing that they prevented AFB1 absorption compared with a control diet. Additionally, the accumulation of radiolabeled AFB1 was more significant in the blood plasma, kidney, and liver of animals fed the control diet, again showing the ability of the binders to reduce the assimilation of AFB1 into the body. The results showed the potential of YCW in reducing the absorption of AFB1 in vivo, and in protecting against the damaging effects of AFB1 contamination.


Assuntos
Aflatoxina B1/farmacocinética , Silicatos de Alumínio/farmacologia , Parede Celular/metabolismo , Colo/efeitos dos fármacos , Suplementos Nutricionais , Absorção Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Administração Oral , Adsorção , Aflatoxina B1/administração & dosagem , Aflatoxina B1/toxicidade , Animais , Colo/metabolismo , Intestino Delgado/metabolismo , Ratos Sprague-Dawley , Distribuição Tecidual
2.
Front Vet Sci ; 7: 437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851020

RESUMO

Tall oil fatty acids (TOFA) are novel, health-improving feed ingredients which have been shown to improve the performance of broiler chickens. TOFA contains resin acids, the suggested key components for its beneficial effects. For product safety, possible accumulation of TOFA components in tissues consumed by end-users is an issue of major importance. Wheat-soy-based diets with an indigestible marker and TOFA at 0, 750 and 3,000 g/t were fed to broiler chickens for 5 weeks; 11 replicate pens/treatment. Deposition of resin acids was assessed by analyzing jejunal tissue, breast muscle, abdominal fat, blood, liver, bile, and digesta along the intestinal tract at the end of the 35-day trial. Both free and conjugated resin acids were quantified. With TOFA 3,000 g/t diet, 30% of ingested resin acids could not be recovered from jejunal digesta. Also, a proportion representing 45% of resin acids fed were in conjugated form and thus had already re-entered the intestine from the bile duct. This means that at least 75% of resin acids ingested had become absorbed in, or proximal to jejunum. Recovery of resin acids in excreta was 45 and 70% when TOFA was fed at 750 and 3,000 g/t, respectively. Based on recovery data, of the estimated 1,087 mg of resin acids ingested by birds on the high TOFA dose during their lifetime, about 330 mg was unaccounted for. In analysis of jejunal tissue, blood, liver, bile, breast muscle, and abdominal tissue, <1 mg of resin acids was found after the 35-day trial when TOFA at the 4-fold the recommended dose was fed. It is likely that the host or microbiota mineralized or converted one-third of resin acids to a form that escaped analysis. TOFA at 3,000 g/t dose caused no detectable adverse effects in broiler chickens. Based on analysis of breast meat and liver, the common edible tissues, a human consumer would ingest <100 µg of resin acids in a single meal. That is one-thousandth of the dose shown to be harmless in rodents. Thus, unintentional exposure of human consumers to resin acids is marginal, and posed no safety concerns.

3.
J Microbiol Methods ; 171: 105867, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32061906

RESUMO

A reliable method for quantification of non-viable microbe-based nutritional and zootechnical additives introduced into feed is essential in order to ensure regulatory compliance, feed safety and product authenticity in industrial applications. In the present work, we developed a novel real-time quantitative polymerase chain reaction (qPCR) -based analysis protocol for monitoring two microbial additives in feed matrices. To evaluate the applicability of the method, pelleted wheat- and maize-based broiler chicken diets containing a non-viable phytase-producing strain of Aspergillus niger produced in solid state fermentation (150 or 300 g/t) and a non-viable selenium-enriched Saccharomyces cerevisiae (100 or 200 g/t) as model feed ingredients, were manufactured and subjected to analysis. Power analysis of the qPCR results indicated that 2 to 6 replicate feed samples were required to distinguish the product doses applied, which confirms that the microbial DNA was efficiently recovered and that potential PCR inhibitors present in the feed material were successfully removed in DNA extraction. The analysis concept described here was shown to be an accurate and sensitive tool for monitoring the inclusion levels of non-viable, unculturable microbial supplements in animal diets.


Assuntos
Ração Animal/análise , Ração Animal/microbiologia , Aspergillus niger/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharomyces cerevisiae/genética , Animais , Aspergillus niger/isolamento & purificação , Galinhas , DNA Fúngico/genética , DNA Intergênico/genética , Aditivos Alimentares/análise , Gado , RNA Ribossômico/genética , RNA Ribossômico 28S/genética , Saccharomyces cerevisiae/isolamento & purificação
4.
Front Vet Sci ; 6: 311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620454

RESUMO

In this paper we describe a study that evaluates the applicability of an in vitro fermentation model to assess the resistance of protein supplements to rumen degradation. The protein sources used were: soybean meal (SBM); whey protein (WHEY), which was expected to be rapidly degraded, and yeast-derived microbial protein (YMP), which was proposed to be resistant to rumen degradation. The basal diet was composed of grass silage and a commercial compound feed. The protein supplements were added at three isonitrogenous doses. Fermentation was monitored for 24 h and gas production, volatile fatty acids, lactic acid, and ammonia were analyzed at three timepoints. Protein degradation was estimated by determining the extent to which branched-chain amino acids (BCAA) introduced with the protein supplement were converted to corresponding branched-chain volatile fatty acids (BCVFA). At the highest dose of WHEY, 60% of introduced valine, leucine, and isoleucine was recovered as isobutyric, 2-methylbutyric, and isovaleric acid (products of BCAA decarboxylation and deamination), respectively. The BCVFA detected represented 50% of added BCAA with SBM, but <15% with YMP. Further indications that YMP protein is resistant to degradation were provided by analysis of ammonia. With YMP, the residual ammonia concentration only marginally exceeded that of the cultures with no protein supplementation, while it increased dose-dependently when the vessels were supplemented with WHEY or SBM. This suggests that with WHEY and SBM, the rate of deamination exceeded the rate of ammonia assimilation by bacteria. Residual ammonia and BCVFA, the two indicators of protein fermentation, were strongly correlated. Overall bacterial activity was monitored as yield of gas, volatile fatty acids, and bacteria. These three correlating parameters showed that WHEY only modestly stimulated fermentation, whereas SBM and YMP stimulated fermentation extensively, possibly owing to their higher carbohydrate content. The results presented suggest that the in vitro fermentation method was suitable for detecting differences in resistance of protein supplements to rumen degradation and following a full method validation could be a useful tool for diet formulation. The data obtained suggested that YMP was the most resistant and WHEY the most susceptible to degradation.

5.
Appl Environ Microbiol ; 73(24): 7867-73, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17933935

RESUMO

Bacteria from crops of 1- and 5-week-old broiler chickens fed with two brands (diets A and B) of wheat-based diets were isolated on Lactobacillus-selective medium and identified (n = 300) based on partial 16S rRNA gene sequence. The most abundant Lactobacillus species were L. reuteri (33%), L. crispatus (18.7%), and L. salivarius (13.3%). Regardless of farm and feed, L. reuteri was the most abundant species (P < 0.005) in the crops of the younger chickens. However, the amount of L. reuteri was significantly reduced in the crops of the 5-week-old chickens regardless of the feed (P = 0.016). The diversity of L. reuteri isolates was studied by fatty acid analysis, and the 94 L. reuteri isolates could be arranged into several clusters. The nisin sensitivities of the L. reuteri isolates were determined because nisin is a candidate coccidiostat. Sensitive isolates were found more frequently in younger chickens (77%) than in 5-week-old chickens (23%), whereas chickens fed with commercial feed B had a higher proportion of nisin-resistant isolates (73%) than did chickens fed with feed A (45%). Nisin-resistant strains are potential candidates for adjunct cultures for maintaining L. reuteri in its natural niche in the crop and are potential targets for genetic engineering with nisin-selectable food-grade vectors. The diversity of the L. reuteri population suggested that one should consider including several strains representing different clusters and nisin resistance phenotypes in candidate probiotic feed supplements for chickens.


Assuntos
Biodiversidade , Galinhas/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillus/classificação , Lactobacillus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Lactobacillus/química , Lactobacillus/genética , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA