Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164047

RESUMO

Plant-derived products have been used since the beginnings of human history to treat various pathological conditions. Practical experience as well as a growing body of research suggests the benefits of the use of turmeric (Curcuma longa) and some of its active components in the reduction of oxidative stress, a mechanism leading to neurodegeneration. In this current study, we investigated the effects of a preparation of Curcuma longa, and its constituents curcumin, tetrahydrocurcumin, and curcumenol, in one of the molecular pathways leading to oxidative stress, which is the release of NO, a free radical involved in stress conditions, using the BV2 microglial cell line. The concentration-dependent reduction of NO is linked to reduced amounts of iNOS protein- and mRNA-synthesis and is possibly mediated by the phosphorylation of mitogen-activated protein kinases (MAPK) such as p42/44 or p38 MAPK. Therefore, the use of turmeric extract is a promising therapeutic option for diseases linked to the dysregulation of oxidative stress, with fewer side-effects in comparison to the currently used pharmacotherapeutics.


Assuntos
Antioxidantes/farmacologia , Curcuma/química , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , RNA Mensageiro/biossíntese , Animais , Humanos , Oxirredução
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769094

RESUMO

Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases.


Assuntos
Cumarínicos/química , Estresse Oxidativo/efeitos dos fármacos , Receptores de Canabinoides/química , Linhagem Celular , Cumarínicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Humanos , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA