Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 319(Pt 3): 117315, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852339

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY: We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS: Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS: HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 µg/mL and 7.95 µg/mL) compared to acarbose (0.144 µg/mL). Most organic fractions exhibited ∼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION: This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.


Assuntos
Anti-Infecciosos , Celastraceae , Maytenus , Humanos , Animais , Ratos , Peroxidação de Lipídeos , Acetilcolinesterase , Butirilcolinesterase , Antioxidantes/farmacologia , Reação de Maillard , Óxido de Magnésio , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , alfa-Amilases , Extratos Vegetais/farmacologia
2.
Exp Parasitol ; 199: 67-73, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797783

RESUMO

Leishmaniasis is one of the most important neglected diseases worldwide. It is a life-threatening disease and causes significant morbidity, long-term disability, and early death. Treatment involves disease control or use of intervention measures, although the currently used drugs require long-lasting therapy, and display toxicity and reduced efficacy. The use of natural products isolated from plants, such as lapachol, an abundant naphthoquinone naturally occurring in South American Handroanthus species (Tabebuia, Bignoniaceae), is a promising option for the treatment of leishmaniasis. In this study, we investigated the leishmanicidal activity of lapachol in vitro and in vivo against Leishmania infantum and L. amazonensis, causative agents of visceral and cutaneous leishmaniasis, respectively. Low cytotoxicity in HepG2 cells (3405.8 ±â€¯261.33 µM), good anti-Leishmania activity, and favorable selectivity indexes (SI) against promastigotes of both L. amazonensis (IC50 = 79.84 ±â€¯9.10 µM, SI = 42.65) and L. infantum (IC50 = 135.79 ±â€¯33.04 µM, SI = 25.08) were observed. Furthermore, anti-Leishmania activity assays performed on intracellular amastigotes showed good activity for lapachol (IC50 = 191.95 µM for L. amazonensis and 171.26 µM for L. infantum). Flow cytometric analysis demonstrated that the cytotoxic effect of lapachol in Leishmania promastigotes was caused by apoptosis-like death. Interestingly, the in vitro leishmanicidal effect of lapachol was confirmed in vivo in murine models of visceral and cutaneous leishmaniasis, as lapachol (25 mg/kg oral route for 24 h over 10 days) was able to significantly reduce the parasitic load in skin lesions, liver, and spleen, similar to amphotericin B, the reference drug. These results reinforce the therapeutic potential of lapachol, which warrants further investigations as an anti-leishmaniasis therapeutic.


Assuntos
Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Naftoquinonas/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células Hep G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/farmacologia , Naftoquinonas/toxicidade , Carga Parasitária , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/parasitologia , Distribuição Aleatória , Pele/parasitologia , Baço/parasitologia , Tabebuia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA