Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 138: 106614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216893

RESUMO

The inflammatory response is a vital mechanism for repairing damage induced by aberrant health states or external insults; however, persistent activation can be linked to numerous chronic diseases. The nuclear factor kappa ß (NF-κB) inflammatory pathway and its associated mediators have emerged as critical targets for therapeutic interventions aimed at modulating inflammation, necessitating ongoing drug development. Previous studies have reported the inhibitory effect of a hydroethanol extract derived from Parinari excelsa Sabine (Chrysobalanaceae) on tumour necrosis factor-alpha (TNF-α), but the phytoconstituents and mechanisms of action remained elusive. The primary objective of this study was to elucidate the phytochemical composition of P. excelsa stem bark and its role in the mechanisms underpinning its biological activity. Two compounds were detected via HPLC-DAD-ESI(Ion Trap)-MS2 analysis. The predominant compound was isolated and identified as naringenin-8-sulphonate (1), while the identity of the second compound (compound 2) could not be determined. Both compound 1 and the extract were assessed for anti-inflammatory properties using a cell-based inflammation model, in which THP-1-derived macrophages were stimulated with LPS to examine the treatments' effects on various stages of the NF-κB pathway. Compound 1, whose biological activity is reported here for the first time, demonstrated inhibition of NF-κB activity, reduction in interleukin 6 (IL-6), TNF-α, and interleukin 1 beta (IL-1ß) production, as well as a decrease in p65 nuclear translocation in THP-1 cells, thus highlighting the potential role of sulphur substituents in the activity of naringenin (3). To explore the influence of sulphation on the anti-inflammatory properties of naringenin derivatives, we synthesized naringenin-4'-O-sulphate (4) and naringenin-7-O-sulphate (5) and evaluated their anti-inflammatory effects. Naringenin derivatives 4 and 5 did not display potent anti-inflammatory activities; however, compound 4 reduced IL-1ß production, and compound 5 diminished p65 translocation, with both exhibiting the capacity to inhibit TNF-α and IL-6 production. Collectively, the findings demonstrated that the P. excelsa extract was more efficacious than all tested compounds, while providing insights into the role of sulphation in the anti-inflammatory activity of naringenin derivatives.


Assuntos
Chrysobalanaceae , NF-kappa B , Humanos , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Chrysobalanaceae/metabolismo , Casca de Planta/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lipopolissacarídeos/farmacologia
2.
Life (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36836763

RESUMO

The present work aimed to detail the mechanisms elicited by Allophylus africanus P. Beauv. stem bark extract in human stomach cancer cells and to identify the bioactives underlying the cytotoxicity. MTT reduction and LDH leakage assays allowed characterizing the cytotoxic effects in AGS cells, which were further detailed by morphological analysis using phalloidin and Hoechst 33258. Proapoptotic mechanisms were elucidated through a mitochondrial membrane potential assay and by assessing the impact upon the activity of caspase-9 and -3. The extract displayed selective cytotoxicity against AGS cells. The absence of plasma membrane permeabilization, along with apoptotic body formation, suggested that pro-apoptotic effects triggered cell death. Intrinsic apoptosis pathway activation was verified, as mitochondrial membrane potential decrease and activation of caspase-9 and -3 were observed. HPLC-DAD profiling enabled the identification of two apigenin-di-C-glycosides, vicenin-2 (1) and apigenin-6-C-hexoside-8-C-pentoside (3), as well as three mono-C-glycosides-O-glycosylated derivatives, apigenin-7-O-hexoside-8-C-hexoside (2), apigenin-8-C-(2-rhamnosyl)hexoside (4) and apigenin-6-C-(2-rhamnosyl)hexoside (5). Isovitexin-2″-O-rhamnoside (5) is the main constituent, accounting for nearly 40% of the total quantifiable flavonoid content. Our results allowed us to establish the relationship between the presence of vicenin-2 and other apigenin derivatives with the contribution to the cytotoxic effects on the presented AGS cells. Our findings attest the anticancer potential of A. africanus stem bark against gastric adenocarcinoma, calling for studies to develop herbal-based products and/or the use of apigenin derivatives in chemotherapeutic drug development.

3.
Food Res Int ; 155: 111082, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400458

RESUMO

Among several extracts from species from Guinea-Bissauan flora, the hydroethanol extract obtained from the leaves of gingerbread plum (Neocarya macrophylla (Sabine) Prance ex F. White.) revealed to be one of the most cytotoxic towards human gastric AGS carcinoma cells. Considering the increasing use of N. macrophylla in the food industry and the abundant biomass of agricultural wastes being generated, the identification of phenolic bioactives has been attained by HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn. Twenty-seven phenolic constituents were identified for the first time in the monotypic genus Neosartorya, 5-O-caffeoylquinic acid being detected as the major constituent (4.90 ± 0.20 mg g-1 dry extract). While 15 flavan-3-ols derivatives were determined, the extract is predominantly characterized by the occurrence of quercetin, kaempferol, apigenin and chrysoeriol glycosides. Typical apoptotic changes in gastric adenocarcinoma AGS cells upon exposure to N. macrophylla leaf extract were observed. The apoptotic cell death is mediated by the activation of the mitochondrial pathway, as loss of mitochondrial membrane potential was detected, as well as increased caspase-9 and -3 activities. The industrial relevance of this plant material, along with the data presented here on the potential anticancer effects of N. macrophylla and the efficient extraction of phenolic bioactives using water and ethanol (GRAS substance), calls for further research on the leaves as a potential functional food and/or ingredient.


Assuntos
Carcinoma , Chrysobalanaceae , Cromatografia Líquida de Alta Pressão , Humanos , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Espectrometria de Massas por Ionização por Electrospray
4.
Food Res Int ; 141: 110121, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641988

RESUMO

While the fruits of Xylopia aethiopica (Dunal) A. Rich. are important in African countries as a local trade product, their composition remains scarcely investigated. Phenolic fingerprint is herein delivered through HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2 analysis, six cinnamoylquinic acid derivatives and twenty-four flavonoid glycosides being determined, chrysoeriol-7-O-glycosides being the main constituents. A cytotoxicity screening of twenty-eight hydroethanol extracts, obtained from a collection of Guinea-Bissauan plants, against A549 and AGS carcinoma cells, revealed the selective and potent effect towards AGS cells (IC50 = 151 × 10-3 g L-1), upon exposure to the extract from X. aethiopica fruits. Additional experiments demonstrated insignificant effect on LDH release at 151 × 10-3 g L-1, morphological analysis further suggesting induction of apoptosis. Pro-apoptotic effects were confirmed, as the extract enabled the activation of the effector caspase-3, broadening the knowledge on the anticancer mechanisms elicited by the fruits of X. aethiopica. Phenolic constituents might contribute to the cytotoxic effects, particularly via caspase-3 activation. Considering that X. aethiopica fruit is very often referred as an anticancer ingredient in Africa, but mainly the potent cytotoxicity herein recorded, our results call for additional research aiming to identify non-phenolic constituents contributing to the effects and also to further detail the anticancer mechanisms.


Assuntos
Adenocarcinoma , Xylopia , África , Caspase 3 , Cromatografia Líquida de Alta Pressão , Frutas , Extratos Vegetais/farmacologia , Neoplasias Gástricas
5.
J Ethnopharmacol ; 269: 113746, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359184

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to ethnobotanical surveys, Cassia sieberiana DC. (1825) is a particularly reputed species in African folk Medicine, namely due to the application of its leaves and roots for the treatment of diseases and symptomatology that appear to be related with an inflammatory background. In contrast with the roots of the plant, the leaves remain to be investigated, which prompted us to further detail mechanisms underlying their anti-inflammatory properties, by using in vitro models of disease. AIM OF THE STUDY: Considering its use in the amelioration and treatment of conditions that frequently underlie an inflammatory response, C. sieberiana leaves extract was prioritized amongst a collection of extracts obtained from plants collected in Guinea-Bissau. As such, this work aims to deliver experimental data on the anti-inflammatory properties of C. sieberiana leaf and to establish possible associations with its chemical composition, thus providing a rationale on its use in folk Medicine. MATERIALS AND METHODS: The chemical profile of an hydroethanol extract obtained from the leaves of the plant was established by HPLC-DAD-ESI/MSn in order to identify bioactives. The extract and its main compound were tested towards a series of inflammatory mediators, both in enzymatic and cell-based models. The capacity to interfere with the eicosanoid-metabolizing enzymes 5-lipoxygenase (5-LOX), cyclooxygenase-1 (COX-1) and -2 (COX-2) was evaluated in cell-free systems, while the effects in interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α) levels produced by THP-1 derived macrophages were assessed through ELISA. RESULTS: HPLC-DAD-ESI/MSn analysis of the extract elucidated a chemical profile qualitatively characterized by a series of anthraquinones, particularly rhein derivatives, and nine flavonols, most of which 3-O-glycosylated. Considering the concentrations of the identified compounds, quercetin was detached as the main component. Effects of the hydroethanol extract obtained from C. sieberiana leaves against key enzymes of the arachidonic acid cascade were recorded, namely a concentration-dependent inhibition against 5-LOX, at concentrations ranging from 16 to 250 µg mL-1 and a selective inhibitory action upon COX-2 (IC50 = 3.58 µg mL-1) in comparison with the isoform COX-1 (IC50 = 9.10 µg mL-1). Impact on inflammatory cytokines was also noted, C. sieberiana leaf extract significantly decreasing IL-6 levels in THP-1 derived macrophages at 250 and 500 µg mL-1. In contrast, TNF-α levels were found to be increased in the same model. Quercetin appears to partially account for the observed effects, namely due to the significant inhibitory effects on the activity of the arachidonic acid metabolizing enzymes COX-2 and 5-LOX. CONCLUSIONS: The anti-inflammatory effects herein reported provide a rationale for the use of C. sieberiana leaves in African folk practices, such as in the treatment of arthritis, rheumatism and body aches. Considering the occurrence of flavonoidic and anthraquinonic constituents, as well as the observed anti-inflammatory properties of quercetin, recorded effects must be related with the presence of several bioactives.


Assuntos
Anti-Inflamatórios/farmacologia , Cassia/química , Inibidores Enzimáticos/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Antraquinonas/química , Anti-Inflamatórios/química , Ciclo-Oxigenase 1/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Eicosanoides/metabolismo , Inibidores Enzimáticos/química , Flavonoides/química , Flavonoides/farmacologia , Guiné-Bissau , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Medicina Tradicional , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Células THP-1
6.
J Ethnopharmacol ; 248: 112312, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ethnopharmacological surveys on Guinea-Bissauan flora reveal that several species are used to treat or ameliorate the symptomatology of conditions with an inflammatory background. As such, extracts obtained from a series of plants recorded in those surveys were screened for their anti-inflammatory properties, a hydroethanolic extract obtained from the leaves of Xylopia aethiopica (Dunal) A. Rich, (Annonaceae), used on the treatment of headache, muscular pain and rheumatic pain, scoring positively and being further investigated. AIM OF THE STUDY: In order to identify species with anti-inflammatory properties, extracts were screened for their ability to interfere with LPS-induced TNF-α levels. Since significant effects were recorded upon treatment with the extract of the leaves obtained from X. aethiopica, further assays were conducted to elucidate additional mechanisms underlying its anti-inflammatory potential. Since little is known on the chemical composition of the plant, we also aimed to characterise its phenolic profile. MATERIALS AND METHODS: Interference with cytokines was evaluated by ELISA assay, through the quantification of TNF-α and IL-6 levels in the culture medium collected from LPS-activated THP-1-derived-macrophages. Inhibition of 5-lipoxygenase was assessed based on the oxidation of linoleic acid to 13-hydroperoxylinoleic acid. Characterization of the phenolic profile was attained by HPLC-DAD. RESULTS: Evaluation of TNF-α levels in LPS-challenged THP-1 macrophages evidenced a significant inhibition (>90%) upon treatment with the hydroethanolic extract obtained from X. aethiopica leaves at a concentration of 500 µg/mL. Additional anti-inflammatory effects were recorded, including a significant decrease on IL-6 levels at 250 and 500 µg/mL. The extract proved to be active towards 5-LOX, leading to significant inhibition at concentrations ranging from 16 to 250 µg/mL (IC50 = 85 µg/mL). Phenolic profiling allowed the identification and quantitation of eight constituents, including caffeoylquinic acids (1-3), mono-O-glycosylated flavonols (5-8), and the mono-O-glycosyl flavone luteolin-7-O-glucoside (4). The main phenolic constituent, kaempferol-3-O-rutinoside (8), was found to significantly contribute to the anti-inflammatory effects, namely through the inhibition of 5-LOX. However, no effects on the decrease of TNF-α and IL-6 levels caused by this phenolic compound were found. CONCLUSION: The anti-inflammatory effects of X. aethiopica leaves are demonstrated experimentally, thus substantiating its use in folk Medicine. Relevantly, the observed anti-inflammatory properties can stimulate further studies in order to fully unveil the therapeutic potential of the plant, namely as a source of phenolic compounds with a significant ability to interfere with conventional inflammatory targets.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Fator de Necrose Tumoral alfa/metabolismo , Xylopia , Anti-Inflamatórios/isolamento & purificação , Araquidonato 5-Lipoxigenase/metabolismo , Flavonoides/isolamento & purificação , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Células THP-1 , Xylopia/química
7.
Molecules ; 24(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295972

RESUMO

Predominantly spread in West Tropical Africa, the shrub Salacia senegalensis (Lam.) DC. is known because of its medicinal properties, the leaves being used in the treatment of skin diseases. Prompted by the ethnomedicinal use, a hydroethanolic extract obtained from the leaves of the plant was screened against a panel of microbial strains, the majority of which involved in superficial infections. The extract was found to be active against the dermatophytes Trichophyton rubrum and Epidermophyton floccosum. Notable results were also recorded regarding the attenuation of the inflammatory response, namely the inhibitory effects observed against soybean 5-lipoxygenase (IC50 = 71.14 µg mL-1), no interference being recorded in the cellular viability of RAW 264.7 macrophages and NO levels. Relevantly, the extract did not lead to detrimental effects against the keratinocyte cell line HaCaT, at concentrations displaying antidermatophytic and anti-inflammatory effects. Flavonoid profiling of S. senegalensis leaves was achieved for the first time, allowing the identification and quantitation of myricitrin, three 3-O-substituted quercetin derivatives, and three other flavonoid derivatives, which may contribute, at least partially, to the observed antidermatophytic and anti-inflammatory effects. In the current study, the plant S. senegalensis is assessed concerning its antidermatophytic and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Salacia/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Antifúngicos/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Flavonoides/química , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/química , Células RAW 264.7 , Análise Espectral
8.
Food Chem Toxicol ; 118: 430-438, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29787847

RESUMO

The small tree Allophylus africanus, widespread in the African continent, has long been considered valuable, as noted by the number of reports on their multiple medicinal uses. With this work, we aimed to extend the current, and so far restricted, knowledge on the chemical composition of the plant, particularly as source of flavonoids, as well as to assess its potential anti-inflammatory properties. The chemical characterization of the aqueous extract obtained from the leaves allowed the identification and quantitation of 30 flavones, predominantly apigenin derivatives, but also four luteolin derivatives, while the stem bark extract was solely characterized by apigenin di-C-glycosides and mono-C-glycosides-O-glycosylated. Strong inhibitory effects towards 5-lipoxygenase were observed with the aqueous extracts obtained from the leaves and stem bark, with IC50 values of 41.28 and 107.77 µg mL-1, respectively. Both extracts were also found to reduce NO levels in LPS-challenged RAW 264.7 macrophages, without noticeable cytotoxicity. The flavonoid profile of the plant is disclosed for the first time, allowing the identification of several molecules that may contribute to mitigate the inflammatory response. Jointly, with the current study the anti-inflammatory use of the leaves and stem bark is partially validated.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Paullinia/química , Casca de Planta/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Limite de Detecção , Inibidores de Lipoxigenase/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA