RESUMO
BACKGROUND: Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. METHODOLOGY/PRINCIPAL FINDINGS: A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. CONCLUSION: The new insights generated on the maize metabolome in response to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize.
Assuntos
Adaptação Biológica , Genótipo , Metaboloma , Metabolômica , Fósforo , Estresse Fisiológico , Zea mays/genética , Zea mays/metabolismo , Análise por Conglomerados , Metabolômica/métodos , Fósforo/deficiência , Fósforo/metabolismo , Zea mays/crescimento & desenvolvimentoRESUMO
An efficient tissue culture technology has been designed for mass multiplication of Nyctanthes arbor-tristis L. by preculturing nodal explants in thidiazuron (TDZ)-supplemented liquid Murashige and Skoog (MS) media. Direct inoculation of nodal segments on semi-solid MS medium augmented with various concentrations of TDZ (0.1 to 0.9 µM) produced shoots but with low regeneration response and few shoots per explant. Hence, nodal explants were pretreated with greater concentrations of TDZ (5 to 100 µM) in liquid MS media for different durations (4, 8, 12, and 16 days) with the aim of improving shoot regeneration response from cultured explants. After pretreatment, explants were transferred to agar-solidified hormone-free MS medium. Best response in terms of percent regeneration (94%), number of shoots per explant (20.00 ± 1.15), and greatest shoot length (7.23 ± 0.83 cm) were obtained with nodal segments pretreated in 75 µM TDZ for 8 days. Similarly, root induction was obtained from pulse-treated microshoots for 24 h with 200 µM indole-3-butyric acid (IBA) followed by their transfer to 1/2 MS medium which produced an average of 5.50 ± 0.92 roots per microshoot. The rooted plantlets were transplanted to soil with 80% success rate.