Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(3): 296-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498245

RESUMO

This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.


Assuntos
Ciclídeos , Animais , Polietileno/toxicidade , Microplásticos/metabolismo , Plásticos , Exposição Dietética/efeitos adversos , Dieta , Nutrientes , Ração Animal/análise , Suplementos Nutricionais
2.
Artigo em Inglês | MEDLINE | ID: mdl-35162678

RESUMO

Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. This study was carried out to assess the beneficial role of two different kinds of (S)-fertilizer in the phytoremediation of Cd contaminated soil through Solanum nigrum L. Gypsum (Gyp) and Elemental sulfur (ES) was applied alone and in combination with different ratios (0, 100:0, 0:100, 50:50 mg kg-1) accompanied by different Cd levels (0, 25, 50 mg kg-1). After seventy days of sowing, plants were harvested for determination of growth, physiological characteristics, oxidants and antioxidants, along with Cd uptake from different parts of the plant. Cd toxicity significantly inhibited growth, physiology and plant defence systems, and also increased Cd uptake in the roots and shoots of Solanum nigrum L. The application of Gyp 100 mg kg-1 boosted plant growth and physiology along with oxidants and antioxidants activity as compared to ES 100 mg kg-1 alone, and combine application of GYP+ES 50 + 50 mg kg-1. The application of ES 100 mg kg-1 showed an effective approach to decreasing Cd uptake as compared to Gyp 100 mg kg-1. Overall results showed that the combined application of GYP+ES 50 + 50 mg kg-1 significantly enhanced the phytoremediation potential of S. nigrum in Cd contaminated soil. Thus, it is highly recommended to apply the combined application of GYP+ES for phytoremediation of Cd contaminated soil.


Assuntos
Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Cádmio/análise , Fertilizantes/análise , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Enxofre
3.
Chemosphere ; 287(Pt 4): 132406, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597649

RESUMO

Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.


Assuntos
Arsênio , Helianthus , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Fósforo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
4.
J Environ Manage ; 271: 111033, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778313

RESUMO

In semi-arid regions, soil phosphorus (P) dynamics in cereal-legume intercropping are not yet fully elucidated, particularly in relation to integrated application of fertilizers. To this aim, we investigate the effects of different fertilizers on various P fractions in relation to the rhizosphere-microbial processes in a cowpea/maize intercropping system. Field experiments were conducted during two consecutive years (2016-2017) in a split-plot design by establishing cowpea/maize alone or intercropped onto the main plot, while the sub-plot was treated with four types of fertilization, i.e. no fertilizer addition (control), organic amendment (compost), mineral fertilizers (NPK) and multi-nutrient enriched compost (NPKEC). Our results showed that NPKEC fertilizer increased NaHCO3-Pi by 69% in maize, 62% in cowpea and 93% in intercropped plots compared to control plots. Similarly, a significant increase in the NaHCO3-Po fraction was also recorded with NPKEC treatment in all cropping systems. In case of moderately labile P, NPKEC fertilizer caused the highest increase of NaOH-Po (12.87 ± 0.50 mg P kg-1 soil) and NaOH-Pi (22.29 ± 0.83 mg P kg-1 soil) fractions in intercropped plots. Except for intercropping, NPK application caused an increase in the non-available P fraction (HCl-Pi), while the use of NPKEC decreased the HCl-Pi concentration in all cropping systems, suggesting stronger merits both for intercropping and NPKEC. Surprisingly, maize exhibited substantially higher phosphatases activity compared to cowpea in monoculture amended with compost, implying distinct crop strategies for adaptation under low P conditions. Based on the multi-factor analysis, the close association of NaHCO3-P with P solubilizing bacteria, root carboxylates and pH indicated that rhizosphere processes are the strongest predictors of immediately available P. Since alkaline phosphatase (ALP) is a P-degrading enzyme of microbial origin, rhizosphere related ALP association may have originated from root-associated microflora promoting P mobilization. Furthermore, the strong association of microbial biomass P (MBP) and acid phosphates (ACP) with NaOH-P fraction indicated moderately available P cycle in soil was mainly driven by microbial-related processes. Factor analysis map and two-way ANOVA confirmed that fertilization regime had a stronger effect on all tested variables compared to cropping system. Altogether, our results suggest that a combination of microbial-rhizosphere processes controls the dynamics of P fertility in semi-arid soils. In the broader context of improving soil P fertility, it is highly recommended the use of environmentally sustainable sources of fertilizer, such as NPKEC, which can enhance the competitive performance of legume-cereal intercropping under semi-arid agroecosystems.


Assuntos
Rizosfera , Solo , Agricultura , Fertilizantes , Fósforo , Zea mays
5.
Chemosphere ; 239: 124725, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31499300

RESUMO

Use of wastewater is known to provide nutrients for crop plants, but its potential to improve phosphorus (P) availability in semi-arid regions is poorly understood. In this study, seasonal changes in soil P availability as well as associated phyiscochemical and biochemical indicators were investigated from the wastewater irrigated urban soils of Faisalabad, Pakistan. Soil sampling was carried out during summer and winter season from four wastewater irrigated sites of varied stream flow i.e. upstream wastewater (UWW), midstream wastewater (MWW), lowerstream wastewater (LWW) and downstream wastewater (DWW), and canal water irrigation (CWI) as a reference site. Across seasons, MWW site had significantly higher soil organic carbon (SOC), water extractable organic carbon (WEOC), microbial biomass carbon (MBC), microbial biomass phosphorus (MBP) as well as the availability of phosphorus i.e. NaHCO3-P and H2O-P compared to CWI site. In both sampling seasons, MWW site also recorded significantly higher soil enzyme activities compared to the rest of wastewater sites. Moreover, significantly higher total P and electrical conductivity (EC) of soil was noticed at DWW site across both summer and winter seasons. Biplot principle component analysis also indicated seasonally a stronger shift in soil total P and EC at DWW site. On the other hand, availability of P was closely related to soil active carbon pools at MWW site. However, buildup of soil salinity particularly at DWW site along with lower P availability and associated changes in other soil properties, call for careful assessment of wastewater use in these urban soils.


Assuntos
Irrigação Agrícola , Fósforo/análise , Solo/química , Águas Residuárias , Biomassa , Carbono/análise , Cidades , Paquistão , Fósforo/farmacocinética , Salinidade , Estações do Ano , Microbiologia do Solo , Águas Residuárias/química
6.
Environ Monit Assess ; 188(2): 102, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26787271

RESUMO

Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment.


Assuntos
Irrigação Agrícola/métodos , Monitoramento Ambiental , Microbiologia do Solo , Solo/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Resíduos Industriais , Nitrogênio/análise , Fósforo/análise , Poluentes do Solo/análise , Indústria Têxtil , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA