Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 9481, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947955

RESUMO

Dietary botanicals such as the cruciferous vegetable broccoli sprouts (BSp) as well as green tea polyphenols (GTPs) have shown exciting potential in preventing or delaying breast cancer (BC). However, little is known about their impact on epigenomic aberrations that are centrally involved in the initiation and progression of estrogen receptor-negative [ER(-)] BC. We have investigated the efficacy of combined BSp and GTPs diets on mammary tumor inhibition in transgenic Her2/neu mice that were administered the diets from prepubescence until adulthood. Herein, we present an integrated DNA methylome and transcriptome analyses for defining the early-life epigenetic impacts of combined BSp and GTPs on mammary tumors and our results indicate that a combinatorial administration of BSp and GTPs have a stronger impact at both transcriptome and methylome levels in comparison to BSp or GTPs administered alone. We also demonstrated a streamlined approach by performing an extensive preprocessing, quality assessment and downstream analyses on the genomic dataset. Our identification of differentially methylated regions in response to dietary botanicals administered during early-life will allow us to identify key genes and facilitate implementation of the subsequent downstream functional analyses on a genomic scale and various epigenetic modifications that are crucial in preventing ER(-) mammary cancer. Furthermore, our realtime PCR results were also found to be consistent with our genome-wide analysis results. These results could be exploited as a comprehensive resource for understanding understudied genes and their associated epigenetic modifications in response to these dietary botanicals.


Assuntos
Neoplasias Mamárias Animais/tratamento farmacológico , Preparações de Plantas/farmacologia , Receptores de Estrogênio/metabolismo , Transcriptoma/genética , Animais , Brassica/química , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Polifenóis/farmacologia , Chá/química
2.
PLoS One ; 15(12): e0234893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382695

RESUMO

Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia, Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.


Assuntos
Dieta/métodos , Ácidos Graxos Voláteis/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Mamárias Experimentais/prevenção & controle , Polifenóis/farmacologia , Plântula/química , Actinobacteria/efeitos dos fármacos , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Animais , Brassica/química , Clostridiales/efeitos dos fármacos , Clostridiales/isolamento & purificação , Clostridiales/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Polifenóis/química , Receptor ErbB-2/deficiência , Receptor ErbB-2/genética , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA