Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1867(3): 130288, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470367

RESUMO

BACKGROUND: The development of safe and effective vaccines against SARS-CoV-2 and other viruses with high antigenic drift is of crucial importance to public health. Ferritin is a well characterized and ubiquitous iron storage protein that has emerged not only as a useful nanoreactor and nanocarrier, but more recently as an efficient platform for vaccine development. SCOPE OF REVIEW: This review discusses ferritin structure-function properties, self-assembly, and novel bioengineering strategies such as interior cavity and exterior surface modifications for cargo encapsulation and delivery. It also discusses the use of ferritin as a scaffold for biomedical applications, especially for vaccine development against influenza, Epstein-Barr, HIV, hepatitis-C, Lyme disease, and respiratory viruses such as SARS-CoV-2. The use of ferritin for the synthesis of mosaic vaccines to deliver a cocktail of antigens that elicit broad immune protection against different viral variants is also explored. MAJOR CONCLUSIONS: The remarkable stability, biocompatibility, surface functionalization, and self-assembly properties of ferritin nanoparticles make them very attractive platforms for a wide range of biomedical applications, including the development of vaccines. Strong immune responses have been observed in pre-clinical studies against a wide range of pathogens and have led to the exploration of ferritin nanoparticles-based vaccines in multiple phase I clinical trials. GENERAL SIGNIFICANCE: The broad protective antibody response of ferritin nanoparticles-based vaccines demonstrates the usefulness of ferritin as a highly promising and effective approaches for vaccine development.


Assuntos
COVID-19 , Vacinas contra Influenza , Humanos , Ferritinas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Desenvolvimento de Vacinas
2.
Nat Rev Chem ; 6(12): 844-861, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37117703

RESUMO

Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.


Assuntos
Aminoácidos , Anticorpos , Anticorpos/uso terapêutico , Interações Hidrofóbicas e Hidrofílicas
3.
Mol Pharm ; 18(10): 3843-3853, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34519511

RESUMO

In addition to activity, successful biological drugs must exhibit a series of suitable developability properties, which depend on both protein sequence and buffer composition. In the context of this high-dimensional optimization problem, advanced algorithms from the domain of machine learning are highly beneficial in complementing analytical screening and rational design. Here, we propose a Bayesian optimization algorithm to accelerate the design of biopharmaceutical formulations. We demonstrate the power of this approach by identifying the formulation that optimizes the thermal stability of three tandem single-chain Fv variants within 25 experiments, a number which is less than one-third of the experiments that would be required by a classical DoE method and several orders of magnitude smaller compared to detailed experimental analysis of full combinatorial space. We further show the advantage of this method over conventional approaches to efficiently transfer historical information as prior knowledge for the development of new biologics or when new buffer agents are available. Moreover, we highlight the benefit of our technique in engineering multiple biophysical properties by simultaneously optimizing both thermal and interface stabilities. This optimization minimizes the amount of surfactant in the formulation, which is important to decrease the risks associated with corresponding degradation processes. Overall, this method can provide high speed of converging to optimal conditions, the ability to transfer prior knowledge, and the identification of new nonlinear combinations of excipients. We envision that these features can lead to a considerable acceleration in formulation design and to parallelization of operations during drug development.


Assuntos
Produtos Biológicos/administração & dosagem , Composição de Medicamentos/métodos , Aprendizado de Máquina , Teorema de Bayes , Produtos Biológicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem
4.
Am J Hematol ; 96(10): 1253-1263, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343368

RESUMO

Iron-refractory iron deficiency anemia (IRIDA) is an autosomal recessive disorder caused by genetic mutations on TMPRSS6 gene which encodes Matriptase2 (MT2). An altered MT2 cannot appropriately suppress hepatic BMP6/SMAD signaling in case of low iron, hence hepcidin excess blocks dietary iron absorption, leading to a form of anemia resistant to oral iron supplementation. In this study, using the IRIDA mouse model Mask, we characterized homozygous (msk/msk) compared to asymptomatic heterozygous (msk/wt) mice, assessing the major parameters of iron status in different organs, at different ages in both sexes. The effect of carbonyl iron diet was analyzed as control iron supplementation being used for many studies in mice. It resulted effective in both anemic control and msk/msk mice, as expected, even if there is no information about its mechanism of absorption. Then, we mainly compared two forms of oral iron supplement, largely used for humans: ferrous sulfate and Sucrosomial iron. In anemic control mice, the two oral formulations corrected hemoglobin levels from 11.40 ± 0.60 to 15.38 ± 1.71 g/dl in 2-4 weeks. Interestingly, in msk/msk mice, ferrous sulfate did not increase hemoglobin likely due to ferroportin/hepcidin-dependent absorption, whereas Sucrosomial iron increased it from 11.50 ± 0.60 to 13.53 ± 0.64 g/dl mainly in the first week followed by a minor increase at 4 weeks with a stable level of 13.30 ± 0.80 g/dl, probably because of alternative absorption. Thus, Sucrosomial iron, already used in other conditions of iron deficiency, may represent a promising option for oral iron supplementation in IRIDA patients.


Assuntos
Anemia Ferropriva/terapia , Compostos Férricos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Compostos de Ferro/uso terapêutico , Ferro da Dieta/uso terapêutico , Administração Oral , Anemia Ferropriva/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Compostos Férricos/administração & dosagem , Compostos Ferrosos/administração & dosagem , Humanos , Ferro/metabolismo , Compostos de Ferro/administração & dosagem , Ferro da Dieta/administração & dosagem , Masculino , Camundongos
5.
Pharmaceuticals (Basel) ; 12(3)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480699

RESUMO

Ribonucleotide reductase (RR) is the rate-limiting enzyme that controls the deoxynucleotide triphosphate synthesis and it is an important target of cancer treatment, since it is expressed in tumor cells in proportion to their proliferation rate, their invasiveness and poor prognosis. Didox, a derivative of hydroxyurea (HU), is one of the most potent pharmaceutical inhibitors of this enzyme, with low in vivo side effects. It inhibits the activity of the subunit RRM2 and deoxyribonucleotides (dNTPs) synthesis, and it seems to show iron-chelating activity. In the present work, we mainly investigated the iron-chelating properties of didox using the HA22T/VGH cell line, as a model of hepatocellular carcinoma (HCC). We confirmed that didox induced cell death and that this effect was suppressed by iron supplementation. Interestingly, cell treatments with didox caused changes of cellular iron content, TfR1 and ferritin levels comparable to those caused by the iron chelators, deferoxamine (DFO) and deferiprone (DFP). Chemical studies showed that didox has an affinity binding to Fe3+ comparable to that of DFO and DFP, although with slower kinetic. Structural modeling indicated that didox is a bidentated iron chelator with two theoretical possible positions for the binding and among them that with the two hydroxyls of the catechol group acting as ligands is the more likely one. The iron chelating property of didox may contribute to its antitumor activity not only blocking the formation of the tyrosil radical on Tyr122 (such as HU) on RRM2 (essential for its activity) but also sequestering the iron needed by this enzyme and to the cell proliferation.

6.
Adv Healthc Mater ; 8(18): e1900612, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31389193

RESUMO

In this study, hybrid nanocubes composed of magnetite (Fe3 O4 ) and manganese dioxide (MnO2 ), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H2 O2 ) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 µg mL-1 of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia.


Assuntos
Membrana Celular/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/terapia , Nanopartículas de Magnetita/química , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Nanomedicina Teranóstica , Apoptose , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Endocitose , Fluorescência , Glioblastoma/patologia , Humanos , Hipertermia Induzida , Nanopartículas de Magnetita/ultraestrutura , Oxigênio/metabolismo , Coroa de Proteína
7.
Nutrients ; 10(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241424

RESUMO

Sucrosomial® Iron is a recently developed formulation to treat iron deficiency based on ferric pyrophosphate covered by a matrix of phospholipids plus sucrose esters of fatty acids. Previous data indicated that Sucrosomial® Iron is efficiently absorbed by iron-deficient subjects, even at low dosage, and without side effects. Its structural properties may suggest that it is absorbed by an intestinal pathway which is different to the one used by ionic iron. Although, studies in vitro showed that Sucrosomial® Iron is readily absorbed, no animal models have been established to study this important aspect. To this aim, we induced iron deficient anemia in mice by feeding them with a low-iron diet, and then we treated them with either Sucrosomial® Iron or sulfate iron by gavage for up to two weeks. Both iron formulations corrected anemia and restored iron stores in a two-week period, but with different kinetics. Ferrous Sulfate was more efficient during the first week and Sucrosomial® Iron in the second week. Of note, when given at the same concentrations, Ferrous Sulfate induced the expression of hepcidin and four different inflammatory markers (Socs3, Saa1, IL6 and CRP), while Sucrosomial® Iron did not. We conclude that anemic mice are interesting models to study the absorption of oral iron, and that Sucrosomial® Iron is to be preferred over Ferrous Sulfate because of similar absorption but without inducing an inflammatory response.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Difosfatos/uso terapêutico , Compostos Férricos/uso terapêutico , Hepcidinas/metabolismo , Inflamação/prevenção & controle , Absorção Intestinal , Deficiências de Ferro , Anemia Ferropriva/sangue , Animais , Difosfatos/farmacocinética , Difosfatos/farmacologia , Modelos Animais de Doenças , Feminino , Compostos Férricos/farmacocinética , Compostos Férricos/farmacologia , Compostos Ferrosos/efeitos adversos , Compostos Ferrosos/uso terapêutico , Células Hep G2 , Humanos , Inflamação/etiologia , Intestinos , Ferro/sangue , Ferro/farmacocinética , Ferro/farmacologia , Ferro/uso terapêutico , Camundongos Endogâmicos BALB C
8.
Neurobiol Dis ; 81: 93-107, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25724358

RESUMO

Iron accumulation occurs in the CNS in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying such iron accumulation are not fully understood. We studied the expression and cellular localization of molecules involved in cellular iron influx, storage, and efflux. This was assessed in two mouse models of EAE: relapsing-remitting (RR-EAE) and chronic (CH-EAE). The expression of molecules involved in iron homeostasis was assessed at the onset, peak, remission/progressive and late stages of the disease. We provide several lines of evidence for iron accumulation in the EAE spinal cord which increases with disease progression and duration, is worse in CH-EAE, and is localized in macrophages and microglia. We also provide evidence that there is a disruption of the iron efflux mechanism in macrophages/microglia that underlie the iron accumulation seen in these cells. Macrophages/microglia also lack expression of the ferroxidases (ceruloplasmin and hephaestin) which have antioxidant effects. In contrast, astrocytes which do not accumulate iron, show robust expression of several iron influx and efflux proteins and the ferroxidase ceruloplasmin which detoxifies ferrous iron. Astrocytes therefore are capable of efficiently recycling iron from sites of EAE lesions likely into the circulation. We also provide evidence of marked dysregulation of mitochondrial function and energy metabolism genes, as well as of NADPH oxidase genes in the EAE spinal cord. This data provides the basis for the selective iron accumulation in macrophage/microglia and further evidence of severe mitochondrial dysfunction in EAE. It may provide insights into processes underling iron accumulation in MS and other neurodegenerative diseases in which iron accumulation occurs.


Assuntos
Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/patologia , Ferritinas/metabolismo , Distúrbios do Metabolismo do Ferro/etiologia , Ferro/metabolismo , Medula Espinal/metabolismo , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Ferritinas/genética , Adjuvante de Freund/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/toxicidade , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Fatores de Tempo
9.
Trends Plant Sci ; 17(1): 47-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22093370

RESUMO

Micronutrient deficiencies are responsible for so-called 'hidden undernutrition'. In particular, iron (Fe) deficiency adversely affects growth, immune function and can cause anaemia. However, supplementation of iron can exacerbate infectious diseases and current policies of iron therapy carefully evaluate the risks and benefits of these interventions. Here we review the approaches of biofortification of valuable crops for reducing 'hidden undernutrition' of iron in the light of the latest nutritional and medical advances. The increase of iron and prebiotics in edible parts of plants is expected to improve health, whereas the reduction of phytic acid concentration, in crops valuable for human diet, might be less beneficial for the developed countries, or for the developing countries exposed to endemic infections.


Assuntos
Alimentos Fortificados , Deficiências de Ferro , Ferro da Dieta/administração & dosagem , Micronutrientes/deficiência , Plantas/química , Anemia Ferropriva/prevenção & controle , Produtos Agrícolas/química , Humanos , Ferro da Dieta/farmacocinética , Ácido Fítico/metabolismo , Plantas Geneticamente Modificadas , Prebióticos
10.
J Am Chem Soc ; 133(27): 10459-72, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21604803

RESUMO

Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.


Assuntos
Carboidratos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Água/química , Compostos Férricos/uso terapêutico , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico
11.
Blood ; 109(10): 4503-10, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17264300

RESUMO

Hemojuvelin (HJV) positively modulates the iron regulator hepcidin, and its mutations are the major cause of juvenile hemochromatosis (JH), a recessive disease leading to iron overload. Defective HJV reduces hepcidin up-regulation both in humans and in Hjv-deficient mice. To investigate the JH pathogenesis and the functional properties of human HJV we studied the biosynthesis and maturation of 6 HJV pathogenic mutants in HeLa and HepG2 cells. We show that proteolytic processing is defective in mutants F170S, W191C, and G320V, but not in G99V and C119F. Moreover, we show that mutants G99V and C119F are targeted to the cell surface, while F170S, W191C, G320V, and R326X (lacking the glycosilphosphatidylinositol [GPI] anchor) are mainly retained in the endoplasmic reticulum, although all mutants are released as soluble forms (s-HJV) in a proportion that is modulated by iron supplementation. Membrane HJV (m-HJV) is mainly composed of the cleaved protein, and its level is increased by iron in wild-type (WT) mice but not in the mutants. Altogether, the data demonstrate that the loss of HJV membrane export is central to the pathogenesis of JH, and that HJV cleavage is essential for the export. The results support a dual function for s- and m-HJV in iron deficiency and overload, respectively.


Assuntos
Membrana Celular/metabolismo , Hemocromatose/etiologia , Hemocromatose/metabolismo , Proteínas de Membrana/metabolismo , Criança , Retículo Endoplasmático/metabolismo , Proteínas Ligadas por GPI , Células HeLa , Proteína da Hemocromatose , Humanos , Ferro/fisiologia , Proteínas de Membrana/genética , Proteínas Mutantes/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Células Tumorais Cultivadas
12.
Blood ; 109(8): 3552-9, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17192393

RESUMO

X-linked sideroblastic anemia with ataxia (XLSA/A) is caused by defects of the transporter ABCB7 and is characterized by mitochondrial iron deposition and excess of protoporphyrin in erythroid cells. We describe ABCB7 silencing in HeLa cells by performing sequential transfections with siRNAs. The phenotype of the ABCB7-deficient cells was characterized by a strong reduction in proliferation rate that was not rescued by iron supplementation, by evident signs of iron deficiency, and by a large approximately 6-fold increase of iron accumulation in the mitochondria that was poorly available to mitochondrial ferritin. The cells showed an increase of protoporphyrin IX, a higher sensitivity to H(2)O(2) toxicity, and a reduced activity of mitochondrial superoxide dismutase 2 (SOD2), while the activity of mitochondrial enzymes, such as citrate synthase or succinate dehydrogenase, and ATP content were not decreased. In contrast, aconitase activity, particularly that of the cytosolic, IRP1 form, was reduced. The results support the hypothesis that ABCB7 is involved in the transfer of iron from mitochondria to cytosol, and in the maturation of cytosolic Fe/S enzymes. In addition, the results indicate that anemia in XLSA/A is caused by the accumulation of iron in a form that is not readily usable for heme synthesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Anemia Ferropriva/genética , Anemia Sideroblástica/genética , Ataxia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Sobrecarga de Ferro/genética , Mitocôndrias/genética , Interferência de RNA , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Anemia Ferropriva/metabolismo , Anemia Sideroblástica/metabolismo , Ataxia/metabolismo , Transporte Biológico/genética , Citoplasma/genética , Citoplasma/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HeLa , Heme/biossíntese , Heme/genética , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
13.
Br J Haematol ; 127(5): 598-603, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15566364

RESUMO

Missense mutations in the ferroportin gene (SLC11A3) result in haemochromatosis type 4 [HFE4, Online Mendelian Inheritance in Man (OMIM) reference 606069] or ferroportin disease, an autosomal dominant disorder characterized by predominantly reticuloendothelial iron accumulation. To verify whether HFE4 is caused by defective iron recycling because of loss of functionality of ferroportin, we down-regulated SLC11A gene expression in human macrophages by using small interfering RNAs (siRNAs). Transfection experiments with ferroportin siRNAs resulted in a marked reduction (about two-thirds on average) in ferroportin mRNA levels as detected by quantitative real time polymerase chain reaction. When macrophages were grown in medium supplemented with iron, cells transfected with siRNAs displayed three- to eightfold increases in staining intensities following Perls reaction. These macrophages also showed significant increases in H-ferritin content. The observation that ferroportin mRNA down-regulation to levels compatible with haplo-insufficiency causes increased iron retention and H-ferritin synthesis in cultured macrophages has important implications. First, this indicates that ferroportin levels must be finely regulated in order to maintain cellular iron homeostasis, and that both copies of SLC11A3 must function efficiently to prevent iron accumulation. Second, this observation supports the hypothesis that reticuloendothelial iron overload in patients with ferroportin disease is caused by loss-of-function mutations in the SLC11A3 gene that mainly impair macrophage iron recycling.


Assuntos
Proteínas de Transporte de Cátions/genética , Ferritinas/biossíntese , Ferro/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Inativação Gênica , Hemostasia , Humanos , RNA Mensageiro/análise , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos
14.
Blood ; 103(6): 2377-83, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-14615379

RESUMO

We describe the use of small interfering RNAs (siRNAs) to down-regulate H- and L-ferritin levels in HeLa cells. siRNAs repressed H- and L-ferritin expression to about 20% to 25% of the background level in both stable and transient transfections. HeLa cells transfected with H- and L-ferritin cDNAs were analyzed in parallel to compare the effects of ferritin up- and down-regulation. We found that large modifications of L-ferritin levels did not affect iron availability in HeLa cells but positively affected cell proliferation rate in an iron-independent manner. The transient down-regulation of H-ferritin modified cellular iron availability and resistance to oxidative damage, as expected. In contrast, the stable suppression of H-ferritin in HeLa cell clones transfected with siRNAs did not increase cellular iron availability but made cells less resistant to iron supplementation and chelation. The results indicate that L-ferritin has no direct effects on cellular iron homeostasis in HeLa cells, while it has new, iron-unrelated functions. In addition, they suggest that H-ferritin function is to act as an iron buffer.


Assuntos
Compostos Férricos/toxicidade , Ferritinas/genética , Ferritinas/metabolismo , Compostos de Amônio Quaternário/toxicidade , Soluções Tampão , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , DNA Complementar , Regulação para Baixo , Expressão Gênica , Células HeLa , Humanos , Ferro/metabolismo , Estresse Oxidativo/fisiologia , RNA Interferente Pequeno , Transfecção , Regulação para Cima
15.
FEBS Lett ; 537(1-3): 187-92, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12606055

RESUMO

We found that tumor necrosis factor alpha (TNFalpha)-induced apoptosis in HeLa cells was accompanied by a approximately 2-fold increase in H- and L-ferritin and a decrease in transferrin receptor, two indices of increased iron availability. Iron supplementation and overexpression of H-ferritin or its mutant with an inactivated ferroxidase center reduced by about approximately 50% the number of apoptotic cells after TNFalpha-treatment, while overexpression of L-ferritin was ineffective. The data indicate that H-ferritin has an anti-apoptotic activity unrelated to its ferroxidase activity and to its capacity to modify cellular iron metabolism.


Assuntos
Apoptose/fisiologia , Ferritinas/metabolismo , Ferro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Dactinomicina/farmacologia , Células HeLa , Humanos , Cinética , Receptores da Transferrina/efeitos dos fármacos , Receptores da Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA