Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(15)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37385264

RESUMO

Objective.Magnetorelaxomety imaging (MRXI) is a noninvasive imaging technique for quantitative detection of magnetic nanoparticles (MNPs). The qualitative and quantitative knowledge of the MNP distribution inside the body is a prerequisite for a number of arising biomedical applications, such as magnetic drug targeting and magnetic hyperthermia therapy. It was shown throughout numerous studies that MRXI is able to successfully localize and quantify MNP ensembles in volumes up to the size of a human head. However, deeper regions that lie far from the excitation coils and the magnetic sensors are harder to reconstruct due to the weaker signals from the MNPs in these areas. On the one hand, stronger magnetic fields need to be applied to produce measurable signals from such MNP distributions to further upscale MRXI, on the other hand, this invalidates the assumption of a linear relation between applied magnetic field and particle magnetization in the current MRXI forward model which is required for the imaging procedure.Approach.We tackle this problem by introducing a nonlinear MRXI forward model that is also valid for strong magnetic excitation fields.Main results.We demonstrate in our experimental feasibility study that scaling up the imaging region to the size of a human torso using nonlinear MRXI is possible. Despite the extreme simplicity of the imaging setup applied in this study, an immobilized MNP sample with 6.3 cm3and 12 mg Fe could be localized and quantified with an acceptable quality.Significance.A well-engineered MRXI setup could provide much better imaging qualities in shorter data acquisition times, making nonlinear MRXI a viable option for the supervision of MNP related therapies in all regions of the human body, specifically magnetic hyperthermia.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Diagnóstico por Imagem , Magnetismo , Campos Magnéticos
2.
Phys Med Biol ; 67(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36265473

RESUMO

Objective.Magnetic nanoparticles (MNPs) are a promising tool in biomedical applications such as cancer therapy and diagnosis, where localization and quantification of MNP distributions are often mandatory. This can be obtained by magnetorelaxometry imaging (MRXI).Approach.In this work, the capability of MRXI for quantitative imaging of MNP inside larger volumes such as a human head is investigated. We developed a human head phantom simulating a glioblastoma multiforme (GBM) tumor containing MNP for magnetic hyperthermia treatment. The sensitivity of our MRXI setup for detection of MNP concentrations in the range of 3-19 mg cm-3was studied.Main result.The results show the high capability of MRXI to detect MNPs in a human head sized volume. Superficial sources with a concentration larger than 12 mg cm-3could be reconstructed with a resulotion of about 1 cm-3.Significance.The reconstruction of the MNP distribution, mimicking a GBM tumor of 7 cm3volume with clinically relevant iron concentration, demonstrates thein vivofeasibility of MRXI in humans.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Humanos , Diagnóstico por Imagem , Magnetismo , Imagens de Fantasmas , Hipertermia Induzida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA