Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33955458

RESUMO

Pulmonary fibrosis is an irreversible, potentially fatal disease. Adrenomedullin (AM) is a multifunctional peptide whose activity is regulated by receptor activity-modifying protein 2 (RAMP2). In the present study, we used the bleomycin (BLM)-induced mouse pulmonary fibrosis model to investigate the pathophysiological significance of the AM-RAMP2 system in the lung. In heterozygous AM knockout mice (AM+/-), hydroxyproline content and Ashcroft scores reflecting the fibrosis severity were significantly higher than in wild-type mice (WT). During the acute phase after BLM administration, FACS analysis showed significant increases in eosinophil, monocyte, and neutrophil infiltration into the lungs of AM+/-. During the chronic phase, fibrosis-related molecules were upregulated in AM+/-. Notably, nearly identical changes were observed in RAMP2+/-. AM administration reduced fibrosis severity. In the lungs of BLM-administered AM+/-, the activation level of Smad3, a receptor-activated Smad, was higher than in WT. In addition, Smad7, an antagonistic Smad, was downregulated and microRNA-21, which targets Smad7, was upregulated compared to WT. Isolated AM+/- lung fibroblasts showed less proliferation and migration capacity than WT fibroblasts. Stimulation with TGF-ß increased the numbers of α-SMA-positive myofibroblasts, which were more prominent among AM+/- cells. TGF-ß-stimulated AM+/- myofibroblasts were larger and exhibited greater contractility and extracellular matrix production than WT cells. These cells were α-SMA (+), F-actin (+), and Ki-67(-) and appeared to be nonproliferating myofibroblasts (non-p-MyoFbs), which contribute to the severity of fibrosis. Our findings suggest that in addition to suppressing inflammation, the AM-RAMP2 system ameliorates pulmonary fibrosis by suppressing TGF-ß-Smad3 signaling, microRNA-21 activity and differentiation into non-p-MyoFbs.


Assuntos
Adrenomedulina/uso terapêutico , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adrenomedulina/metabolismo , Adrenomedulina/farmacologia , Animais , Bleomicina , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Infusões Intravenosas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/prevenção & controle , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA