Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(4): e23699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532648

RESUMO

The endocrine disruptor hexavalent chromium [Cr(VI)] is a proven reproductive toxicant. We recently demonstrated that prenatal Cr(VI) exposure causes testicular resistance to gonadotropins, resulting in hypergonadotropic hypoandrogenism in F1 rats. However, the mechanism driving hypergonadotropism in F1 rats exposed to Cr(VI) prenatally remains an enigma. Therefore, we hypothesized that 'Prenatal Cr(VI) exposure may disrupt steroid hormones-mediated negative feedback regulation of the hypothalamic GnRH, and its receptor in the pituitary of F1 rats, leading to hypergonadotropism.' We administered potassium dichromate (50, 100, or 200 mg/L) to pregnant rats through drinking water between days 9 and 14, and their male F1 offspring were euthanized at 60 days of age. Prenatal Cr(VI) exposure in F1 rats resulted in the accumulation of Cr in the hypothalamus and pituitary. Western blot detected decreased hypothalamic GnRH, Kisspeptin1, and its receptor GPR54, along with diminished ERα, AR, aromatase, and 5α reductase, and GnRH regulatory transcription factors Pit-1 and GATA-4 proteins. Immunohistochemical studies revealed increased immunopositivity of GnRH receptor, AR, 5α reductase, ERα, ERß, and aromatase proteins in the pituitary, whereas decreased Kisspeptin1, GPR54, and inhibin ß. Our findings imply that Cr(VI) exposure during the prenatal period disrupts the hypothalamic Kisspeptin-GPR54-Pit-1/GATA4-GnRH network, boosting the pituitary GnRH receptor. We conclude that prenatal exposure to Cr(VI) alters GnRH expression in the hypothalamus and its receptor in the pituitary of F1 progeny through interfering with the negative feedback effect of androgens and estrogens.


Assuntos
Cromo , Efeitos Tardios da Exposição Pré-Natal , Receptores LHRH , Feminino , Gravidez , Humanos , Ratos , Masculino , Animais , Receptores LHRH/metabolismo , Receptor alfa de Estrogênio/metabolismo , Aromatase , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Hipotálamo , Hormônio Liberador de Gonadotropina/metabolismo
2.
Toxicol Appl Pharmacol ; 215(3): 237-49, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16678873

RESUMO

The present study was designed to test the hypothesis that oxidative stress mediates chromium-induced reproductive toxicity. Monthly semen samples were collected from adult monkeys (Macaca radiata), which were exposed to varying doses (50, 100, 200 and 400 ppm) of chromium (as potassium dichromate) for 6 months through drinking water. Chromium treatment decreased sperm count, sperm forward motility and the specific activities of antioxidant enzymes, superoxide dismutase and catalase, and the concentration of reduced glutathione in both seminal plasma and sperm in a dose- and duration-dependent manner. On the other hand, the quantum of hydrogen peroxide in the seminal plasma/sperm from monkeys exposed to chromium increased with increasing dose and duration of chromium exposure. All these changes were reversed after 6 months of chromium-free exposure period. Simultaneous supplementation of vitamin C (0.5 g/L; 1.0 g/L; 2.0 g/L) prevented the development of chromium-induced oxidative stress. Data support the hypothesis and show that chronic chromium exposure induces a reversible oxidative stress in the seminal plasma and sperm by creating an imbalance between reactive oxygen species and antioxidant system, leading to sperm death and reduced motility of live sperm.


Assuntos
Ácido Ascórbico/farmacologia , Cromo/toxicidade , Espermatozoides/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Cromo/sangue , Cromo/farmacocinética , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Macaca radiata/metabolismo , Macaca radiata/fisiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Sêmen/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA