Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047009

RESUMO

Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.


Assuntos
Phoeniceae , Silício , Silício/farmacologia , Silício/metabolismo , Phoeniceae/genética , Phoeniceae/metabolismo , Antioxidantes/farmacologia , Temperatura , Estresse Oxidativo
2.
Environ Pollut ; 318: 120868, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526054

RESUMO

The Arsenic (As) load on the environment has increased immensely due to large-scale industrial and agricultural uses of As in several synthetic products, such as fertilizers, herbicides, and pesticides. Melatonin is a plant hormone that has a key role in abiotic stress inhibition, but the mechanism of resilience to As stress remains unexplored in rice plants. In this study, we determined how As affects rice plant and how melatonin facilitate As stress tolerance in rice. Here we investigated that, exogenous melatonin reduced As stress by inducing anthocyanin biosynthesis. Melatonin induced the expression of anthocyanin biosynthesis genes such as PAL, CHS, CHI, F3H, DFR, and ANS, which resulted in 1659% and 389% increases in cyanidin and delphinidin, respectively. Similarly, melatonin application significantly induced SA and ABA accumulation in response to As stress in rice plant. Application of melatonin also significantly reduced expression of PT-2 and PT-8 (transporter genes) and reduced uptake of As and its translocation to other compartments. Melatonin and As analysis revealed that melatonin application significantly reduced As contents in the melatonin-supplemented plants, suggesting that As uptake is largely dependent on either the melatonin basal level or anthocyanin in rice plants. In this study, we investigated new symptoms on leaves, which can severely damage leaves and impair photosynthesis. However, anthocyanin as a chelating agent, detoxifies As in vacuole and reduces oxidative stress induced by As.


Assuntos
Arsênio , Melatonina , Oryza , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Antocianinas/farmacologia , Arsênio/toxicidade , Arsênio/metabolismo , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo
3.
Sci Rep ; 12(1): 16787, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202844

RESUMO

Dracaena (Asparagaceae family) tree is famous for producing "dragon blood"-a bioactive red-colored resin. Despite its long history of use in traditional medicine, little knowledge exists on the genomic architecture, phylogenetic position, or evolution. Hence, in this study, we sequenced the whole chloroplast (cp) genomes of D. serrulata and D. cinnabari and performed comparative genomics of nine genomes of the genus Dracaena. The results showed that the genome sizes range from 155,055 (D. elliptica) to 155,449 (D. cochinchinensis). The cp genomes of D. serrulata and D. cinnabari encode 131 genes, each including 85 and 84 protein-coding genes, respectively. However, the D. hokouensis had the highest number of genes (133), with 85 protein coding genes. Similarly, about 80 and 82 repeats were identified in the cp genomes of D. serrulata and D. cinnabari, respectively, while the highest repeats (103) were detected in the cp genome of D. terniflora. The number of simple sequence repeats (SSRs) was 176 and 159 in D. serrulata and D. cinnabari cp genomes, respectively. Furthermore, the comparative analysis of complete cp genomes revealed high sequence similarity. However, some sequence divergences were observed in accD, matK, rpl16, rpoC2, and ycf1 genes and some intergenic spacers. The phylogenomic analysis revealed that D. serrulata and D. cinnabari form a monophyletic clade, sister to the remaining Dracaena species sampled in this study, with high bootstrap values. In conclusion, this study provides valuable genetic information for studying the evolutionary relationships and population genetics of Dracaena, which is threatened in its conservation status.


Assuntos
Dracaena , Genoma de Cloroplastos , Cloroplastos/genética , Dracaena/genética , Repetições de Microssatélites/genética , Filogenia , Sequenciamento Completo do Genoma
4.
BMC Genomics ; 23(1): 83, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086490

RESUMO

BACKGROUND: Ziziphus hajarensis is an endemic plant species well-distributed in the Western Hajar mountains of Oman. Despite its potential medicinal uses, little is known regarding its genomic architecture, phylogenetic position, or evolution. Here we sequenced and analyzed the entire chloroplast (cp) genome of Z. hajarensis to understand its genetic organization, structure, and phylogenomic disposition among Rhamnaceae species. RESULTS: The results revealed the genome of Z. hajarensis cp comprised 162,162 bp and exhibited a typical quadripartite structure, with a large single copy (LSC) region of 895,67 bp, a small single copy (SSC) region of 19,597 bp and an inverted repeat (IR) regions of 26,499 bp. In addition, the cp genome of Z. hajarensis comprises 126 genes, including 82 protein-coding genes, eight rRNA genes, and 36 tRNA genes. Furthermore, the analysis revealed 208 microsatellites, 96.6% of which were mononucleotides. Similarly, a total of 140 repeats were identified, including 11 palindromic, 24 forward, 14 reverse, and 104 tandem repeats. The whole cp genome comparison of Z. hajarensis and nine other species from family Rhamnaceae showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. Comparative phylogenetic analysis based on the complete cp genome, 66 shared genes and matK gene revealed that Z. hajarensis shares a clade with Z. jujuba and that the family Rhamnaceae is the closest family to Barbeyaceae and Elaeagnaceae. CONCLUSION: All the genome features such as genome size, GC content, genome organization and gene order were highly conserved compared to the other related genomes. The whole cp genome of Z. hajarensis gives fascinating insights and valuable data that may be used to identify related species and reconstruct the phylogeny of the species.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Rhamnaceae , Ziziphus , Genômica , Repetições de Microssatélites , Filogenia , Plantas Medicinais/genética , Ziziphus/genética
5.
Front Plant Sci ; 12: 665590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177981

RESUMO

Salinity has drastically reduced crop yields and harmed the global agricultural industry. We isolated 55 bacterial strains from plants inhabiting the coastal sand dunes of Pohang, Korea. A screening bioassay showed that 14 of the bacterial isolates secreted indole-3-acetic acid (IAA), 12 isolates were capable of exopolysaccharide (EPS) production and phosphate solubilization, and 10 isolates secreted siderophores. Based on our preliminary screening, 11 bacterial isolates were tested for salinity tolerance on Luria-Bertani (LB) media supplemented with 0, 50, 100, and 150 mM of NaCl. Three bacterial isolates, ALT11, ALT12, and ALT30, had the best tolerance against elevated NaCl levels and were selected for further study. Inoculation of the selected bacterial isolates significantly enhanced rice growth attributes, viz., shoot length (22.8-42.2%), root length (28.18-59%), fresh biomass (44.7-66.41%), dry biomass (85-90%), chlorophyll content (18.30-36.15%), Chl a (29.02-60.87%), Chl b (30.86-64.51%), and carotenoid content (26.86-70%), under elevated salt stress of 70 and 140 mM. Furthermore, a decrease in the endogenous abscisic acid (ABA) content (27.9-23%) and endogenous salicylic acid (SA) levels (11.70-69.19%) was observed in inoculated plants. Antioxidant analysis revealed an increase in total protein (TP) levels (42.57-68.26%), whereas it revealed a decrease in polyphenol peroxidase (PPO) (24.63-34.57%), glutathione (GSH) (25.53-24.91%), SOA (13.88-18.67%), and LPO levels (15.96-26.06%) of bacterial-inoculated plants. Moreover, an increase in catalase (CAT) (26-33.04%), peroxidase (POD) (59.55-78%), superoxide dismutase (SOD) (13.58-27.77%), and ascorbic peroxidase (APX) (5.76-22.74%) activity was observed. Additionally, inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a decline in Na+ content (24.11 and 30.60%) and an increase in K+ (23.14 and 15.45%) and Mg+ (2.82 and 18.74%) under elevated salt stress. OsNHX1 gene expression was downregulated (0.3 and 4.1-folds), whereas the gene expression of OsPIN1A, OsCATA, and OsAPX1 was upregulated by a 7-17-fold in bacterial-inoculated rice plants. It was concluded that the selected bacterial isolates, ALT11, ALT12, and ALT30, mitigated the adverse effects of salt stress on rice growth and can be used as climate smart agricultural tools in ecofriendly agricultural practices.

6.
Microorganisms ; 8(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033333

RESUMO

Revealing the unexplored rhizosphere microbiome of plants in arid environments can help in understanding their interactions between microbial communities and plants during harsh growth conditions. Here, we report the first investigation of rhizospheric fungal and bacterial communities of Adenium obesum, Aloe dhufarensis and Cleome austroarabica using next-generation sequencing approaches. A. obesum and A. dhufarensis grows in dry tropical and C. austroarabica in arid conditions of Arabian Peninsula. The results indicated the presence of 121 fungal and 3662 bacterial operational taxonomic units (OTUs) whilst microbial diversity was significantly high in the rhizosphere of A. obesum and A. dhufarensis and low in C. austroarabica. Among fungal phyla, Ascomycota and Basidiomycota were abundantly associated within rhizospheres of all three plants. However, Mucoromycota was only present in the rhizospheres of A. obesum and A. dhufarensis, suggesting a variation in fungal niche on the basis of host and soil types. In case of bacterial communities, Actinobacteria, Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia were predominant microbial phyla. These results demonstrated varying abundances of microbial structure across different hosts and locations in arid environments. Rhizosphere's extracellular enzymes analysis revealed varying quantities, where, glucosidase, cellulase, esterase, and 1-aminocyclopropane-1-carboxylate deaminase were significantly higher in the rhizosphere of A. dhufarensis, while phosphatase and indole-acetic acid were highest in the rhizosphere of A. obesum. In conclusion, current findings usher for the first time the core microbial communities in the rhizospheric regions of three arid plants that vary greatly with location, host and soil conditions, and suggest the presence of extracellular enzymes could help in maintaining plant growth during the harsh environmental conditions.

7.
PLoS One ; 12(2): e0171534, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187139

RESUMO

Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants.


Assuntos
Cádmio/toxicidade , Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Estresse Oxidativo , Serratia marcescens/genética , Acetoína/metabolismo , Ácidos Indolacéticos/metabolismo , Anotação de Sequência Molecular , Fosfatos/metabolismo , Solanum/efeitos dos fármacos , Solanum/microbiologia
8.
J Zhejiang Univ Sci B ; 18(2): 125-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124841

RESUMO

Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.


Assuntos
Endófitos/metabolismo , Germinação/fisiologia , Ácidos Indolacéticos/metabolismo , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Medicinais/microbiologia , Antioxidantes/química , Biodiversidade , Evolução Molecular , Cromatografia Gasosa-Espectrometria de Massas , Mutação , Oryza/genética , Oryza/microbiologia , Filogenia , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA