Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447291

RESUMO

Environmental exposures, particularly diet, play an important role in the prevention or exacerbation of illnesses, including gastrointestinal (GI) diseases [...].


Assuntos
Suplementos Nutricionais , Nutrigenômica , Dieta
2.
Nutrients ; 14(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014823

RESUMO

Intensive screening for better and safer medications to treat diseases such as cancer and inflammatory diseases continue, and some phytochemicals have been discovered to have anti-cancer and many therapeutical activities. Among the traditionally used spices, Crocus sativus (saffron) and its principal bioactive constituents have anti-inflammatory, antioxidant, and chemopreventive properties against multiple malignancies. Early reports have shown that the epigenetic profiles of healthy and tumor cells vary significantly in the context of different epigenetic factors. Multiple components, such as carotenoids as bioactive dietary phytochemicals, can directly or indirectly regulate epigenetic factors and alter gene expression profiles. Previous reports have shown the interaction between active saffron compounds with linker histone H1. Other reports have shown that high concentrations of saffron bind to the minor groove of calf thymus DNA, resulting in specific structural changes from B- to C-form of DNA. Moreover, the interaction of crocin G-quadruplex was reported. A recent in silico study has shown that residues of SIRT1 interact with saffron bio-active compounds and might enhance SIRT1 activation. Other reports have shown that the treatment of Saffron bio-active compounds increases γH2AX, decreases HDAC1 and phosphorylated histone H3 (p-H3). However, the question that still remains to be addressed how saffron triggers various epigenetic changes? Therefore, this review discusses the literature published till 2022 regarding saffron as dietary components and its impact on epigenetic mechanisms. Novel bioactive compounds such as saffron components that lead to epigenetic alterations might be a valuable strategy as an adjuvant therapeutic drug.


Assuntos
Crocus , Neoplasias , Crocus/química , DNA/química , Código das Histonas , Humanos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sirtuína 1
3.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202689

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. One of its subtypes is associated with defective mismatch repair (dMMR) genes. Saffron has many potentially protective roles against colon malignancy. However, these roles in the context of dMMR tumors have not been explored. In this study, we aimed to investigate the effects of saffron and its constituents in CRC cell lines with dMMR. METHODS: Saffron crude extracts and specific compounds (safranal and crocin) were used in the human colorectal cancer cell lines HCT116, HCT116+3 (inserted MLH1), HCT116+5 (inserted MSH3), and HCT116+3+5 (inserted MLH1 and MSH3). CDC25b, p-H2AX, TPDP1, and GAPDH were analyzed by Western blot. Proliferation and cytotoxicity were analyzed by MTT. The scratch wound assay was also performed. RESULTS: Saffron crude extracts restricted (up to 70%) the proliferation in colon cells with deficient MMR (HCT116) compared to proficient MMR. The wound healing assay indicates that deficient MMR cells are doing better (up to 90%) than proficient MMR cells when treated with saffron. CDC25b and TDP1 downregulated (up to 20-fold) in proficient MMR cells compared to deficient MMR cells, while p.H2AX was significantly upregulated in both cell types, particularly at >10 mg/mL saffron in a concentration-dependent manner. The reduction in cellular proliferation was accompanied with upregulation of caspase 3 and 7. The major active saffron compounds, safranal and crocin reproduced most of the saffron crude extracts' effects. CONCLUSIONS: Saffron's anti-proliferative effect is significant in cells with deficient MMR. This novel effect may have therapeutic implications and benefits for MSI CRC patients who are generally not recommended for the 5-fluorouracil-based treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Crocus/química , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Instabilidade de Microssatélites/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Extratos Vegetais/química
4.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199466

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray-Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis.


Assuntos
Bactérias/classificação , Produtos Biológicos/administração & dosagem , Colite/tratamento farmacológico , Crocus/química , Sulfato de Dextrana/efeitos adversos , Microbiota/efeitos dos fármacos , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Produtos Biológicos/farmacologia , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Profilaxia Pré-Exposição , Serotonina/metabolismo , Resultado do Tratamento
5.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756469

RESUMO

The high mortality rate of colorectal cancer (CRC) patients is directly associated with metastatic dissemination. However, therapeutic options specifically for metastasis are still limited. We previously identified Metastasis-Associated in Colon Cancer 1 (MACC1) as a major causal metastasis-inducing gene. Numerous studies confirmed its value as a biomarker for metastasis risk. We investigated the inhibitory impact of saffron on MACC1-induced cancer cell growth and motility. Saffron crudes restricted the proliferation and migration of MACC1-expressing CRC cells in a concentration- and MACC1-dependent manner. Saffron delays cell cycle progression at G2/M-phase and does not induce apoptosis. Rescue experiments showed that these effects are reversible. Analysis of active saffron compounds elucidated that crocin was the main compound that reproduced total saffron crudes effects. We showed the interaction of MACC1 with the cancer stem cell (CSC) marker DCLK1, which contributes to metastasis formation in different tumor entities. Saffron extracts reduced DCLK1 with crocin being responsible for this reduction. Saffron's anti-proliferative and anti-migratory effects in MACC1-expressing cells are mediated by crocin through DCLK1 down-regulation. This research is the first identification of saffron-based compounds restricting cancer cell proliferation and motility progression via the novel target MACC1.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Crocus/química , Transativadores/metabolismo , Antineoplásicos/química , Carotenoides/análise , Carotenoides/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Quinases Semelhantes a Duplacortina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética
6.
Nutrients ; 11(5)2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027364

RESUMO

Saffron is a natural compound that has been used for centuries in many parts of the world as a food colorant and additive. It was shown to have the ability to mitigate various disorders through its known anti-inflammatory and anti-oxidant properties. Several studies have shown the effectiveness of saffron in the treatment of various chronic diseases like inflammatory bowel diseases, Alzheimer's, rheumatoid arthritis as well as common malignancies of the colon, stomach, lung, breast, and skin. Modern day drugs generally have unwanted side effects, which led to the current trend to use naturally occurring products with therapeutic properties. In the present review, the objective is to systematically analyze the wealth of information regarding the potential mechanisms of action and the medical use of saffron, the "golden spice", especially in digestive diseases. We summarized saffron influence on microbiome, molecular pathways, and inflammation in gastric, colon, liver cancers, and associated inflammations.


Assuntos
Carotenoides/farmacologia , Crocus/química , Gastroenteropatias/prevenção & controle , Extratos Vegetais/farmacologia , Especiarias/análise , Carotenoides/química , Carotenoides/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA