Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Chip ; 22(16): 3055-3066, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851596

RESUMO

Personalized diagnostics of infectious diseases require monitoring disease progression due to their ever-changing physiological conditions and the multi-faceted organ system mechanisms involved in disease pathogenesis. In such instances, the recommended clinical strategies involve multiplexing data collection from critical biomarkers related to a patient's conditions along with longitudinal frequent patient monitoring. Numerous detection technologies exist both in research and commercial settings to monitor these conditions, however, they fail to provide biomarker multiplexing ability with design and data processing simplicity. For a recently conceived multiplexing biomarker modality, this work demonstrates the use of electrically sensitive microparticles targeting and identifying membrane receptors on leukocytes using a single detection source, with a high potential for multiplexing greater than any existing impedance-based single-detection scheme. Here, polystyrene microparticles are coated with varying thicknesses of metal oxides, which generate quantifiable impedance shifts when exposed to multifrequency electric fields depending on the metal oxide thickness. Using multifrequency impedance cytometry, these particles can be measured and differentiated rapidly across one coplanar electrode scheme. After surface-functionalizing particles with antibodies targeting CD11b and CD66b receptors, the particles are combined with isolated neutrophils to measure receptor expression. A combination of data analysis techniques including multivariate analysis, supervised machine learning, and unsupervised machine learning was able to accurately differentiate samples with up to 91% accuracy. This proof-of-concept study demonstrates the potential for these oxide-coated particles for enumerating specific leukocytes enabling multiplexing. Further, additional coating thicknesses or different metal oxide materials can enable a compendium of multiplexing targeting resource to be used to develop a high-multiplexing sensor for targeting membrane receptor expression.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Óxido de Alumínio , Anticorpos , Biomarcadores , Impedância Elétrica , Humanos , Neutrófilos , Óxidos
2.
Anal Bioanal Chem ; 413(2): 555-564, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33156401

RESUMO

Hybrid material surfaces on microparticles are emerging as vehicles for many biomedical multiplexing applications. Functionalization of these hybrid surface microparticles to biomolecules presents unique challenges related to optimization of surface chemistries including uniformity, repeatability, and sample sparring. Hybrid interfaces between microlevel surfaces and individual biomolecules will provide different microenvironments impacting the surface functionalization optimization and efficiency. Here, we propose and validate the first demonstration of streptavidin adsorption-based antibody functionalization on unmodified, hybrid surface microparticles for in vitro analysis. We test this analytical technique and fabricate hybrid surface microparticles with a polystyrene core and aluminum oxide semi-coating. Additionally, we optimize the streptavidin-biotin functionalization chemistry in both assay implementation and sample sparring via analytical mass balances for these microparticles and subsequently conjugate anti-human CD11b antibodies. Result confirmation and characterization occurs from ultraviolet protein absorbance and ImageJ processing of fluorescence microscopy images. Additionally, we design and implement the multi-sectional imaging (MSI) approach to support functionalization uniformity on the hybrid surface microparticles. Finally, as a proof-of-concept performance, we validate anti-CD11b antibodies functionalization by visualizing hybrid surface microparticles conjugate to human neutrophils isolated from blood samples collected from potentially septic patients. Our study introduces and defines a category of functionalization for hybrid surface microparticles with the intent of minuscule sample volumes, low cost, and low environmental impact to be used for many cellular or proteomic in vitro multiplexing applications in the future. Graphical abstract.


Assuntos
Óxido de Alumínio/análise , Microesferas , Neutrófilos/metabolismo , Estreptavidina/análise , Adsorção , Biotina/química , Antígeno CD11b/análise , Humanos , Técnicas In Vitro , Microscopia de Fluorescência , Tamanho da Partícula , Poliestirenos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA