Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027796

RESUMO

Bracon hebetor (Say) is an important parasitoid and played a suitable model role for bio control programs. Pest management through biocontrol approaches such as plant extracts is an ecologically responsive and enthusiastic means of reducing insect pests. The main objective of the present research was to discover the efficiency and susceptibility periods of plant extracts for the assessment of parasitoids. The toxicity of five plants (Cymbopogon nardus, Azadirachta indica, Syzygium aromaticum, Datura stramonium and Parthenium hysterophorus) extracts were evaluated against B. hebetor to detect the possible way forward to controlling insect pests along with the adverse effects on beneficial insects. The data was recorded regarding mortality of B. hebetor, after calculated time periods with different intervals of up to 2 days. Datasets were followed by a statistical probe which exhibited significant results. The extracts of C. nardus, A. indica, S. aromaticum and D. stramonium exhibited non-toxic effects, whereas P. hysterophorus indicated low toxicity annotations against investigated parasitoid. These investigations suggested that four plants examined are not hazardous to the parasitoids whereas P. hysterophorus somehow has detrimental effects at low toxicity levels. Further development of insecticide resistance mechanisms in the parasitoid favors the enhancement of parasitoid efficacy with plant extracts. The possible selective use of these plant extracts and their effects on the safety period of parasitoids for integration with other approaches in sustainable pest management programs is discussed.

2.
Comb Chem High Throughput Screen ; 25(7): 1181-1186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34391377

RESUMO

Oxalis corniculata (Oxalidaceae) is a small decumbent and delicate appearing medicinal herb flourishing in warm temperate and tropical domains such as Pakistan and India. Main bioactive chemical constituents of Oxalis plant include several alkaloids, flavonoids, terpenoids, cardiac glycosides, saponins, and phlobatannins, along with steroids. Due to its polyphenolic, glycosides and flavonoid profile, it is proved to be protective in numerous ailments and exhibit various biological activities such as anti-fungal, anti-cancer, anti-oxidant, antibacterial, anti-diabetic, and cardioprotective. Moreover, bioactive phytochemicals from this plant possess significant wound healing potential. Our current effort intends to emphasize on the immense significance of this plant species, which have not been the subject matter of clinical trials and effective pharmacological studies, even though its favored usage has been stated. This review proposes that Oxalis corniculata possess a potential for the cure of various diseases. However, further researches on isolation and characterization of bioactive compounds along with pre-clinical trials are compulsory to figure out its pharmacological applications.


Assuntos
Oxalidaceae , Plantas Medicinais , Antibacterianos/farmacologia , Antioxidantes , Flavonoides/farmacologia , Oxalidaceae/química , Compostos Fitoquímicos , Extratos Vegetais/química , Plantas Medicinais/química
3.
Biomed Res Int ; 2021: 5514669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136566

RESUMO

Pyruvate kinase (PK), a key enzyme that determines glycolytic activity, has been known to support the metabolic phenotype of tumor cells, and specific pyruvate kinase isoform M2 (PKM2) has been reported to fulfill divergent biosynthetic and energetic requirements of cancerous cells. PKM2 is overexpressed in several cancer types and is an emerging drug target for cancer during recent years. Therefore, this study was carried out to identify PKM2 inhibitors from natural products for cancer treatment. Based on the objectives of this study, firstly, plant extract library was established. In order to purify protein for the establishment of enzymatic assay system, pET-28a-HmPKM2 plasmid was transformed to E. coli BL21 (DE3) cells for protein expression and purification. After the validation of enzymatic assay system, plant extract library was screened for the identification of inhibitors of PKM2 protein. Out of 51 plant extracts screened, four extracts Mangifera indica (leaf, seed, and bark) and Bombex ceiba bark extracts were found to be inhibitors of PKM2. In the current study, M. indica (leaf, seed, and bark) extracts were further evaluated dose dependently against PKM2. These extracts showed different degrees of concentration-dependent inhibition against PKM2 at 90-360 µg/ml concentrations. We have also investigated the anticancer potential of these extracts against MDA-MB231 cells and generated dose-response curves for the evaluation of IC50 values. M. indica (bark and seed) extracts significantly halted the growth of MDA-MB231 cells with IC50 values of 108 µg/ml and 33 µg/ml, respectively. Literature-based phytochemical analysis of M. indica was carried out, and M. indica-derived 94 compounds were docked against three binding sites of PKM2 for the identification of PKM2 inhibitors. The results of in silico based screening have unveiled various PKM2 modulators; however, further studies are recommended to validate their PKM2 inhibitory potential via in vitro biochemical assay. The results of this study provide novel findings for possible mechanism of action of M. indica (bark and seed) extracts against TNBC via PKM2 inhibition suggesting that M. indica might be of therapeutic interest for the treatment of TNBC.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Mangifera/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Plasmídeos/metabolismo , Sementes/metabolismo , Sais de Tetrazólio , Tiazóis , Hormônios Tireóideos , Neoplasias de Mama Triplo Negativas/enzimologia , Proteínas de Ligação a Hormônio da Tireoide
4.
Biomed Pharmacother ; 103: 1643-1651, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29864953

RESUMO

Plants have been used as medicinal agents since the origin of mankind. High cost and severe side effects associated with conventional chemotherapy has limited their general acceptability and fuel up the search for alternate options. The alternative treatment options like phytochemicals have come up with ease of availability and cost effectiveness. Owing to their general acceptance, safety, low side effects and multistep targeting in signal transduction pathways, plant derived phyto-constituents have promising anti-carcinogenic potential for skin related cancers. This leads to the surge in research of new phytochemicals for the prevention and cure of a variety of skin cancers which are major cause of morbidity and mortality in present world. Although very limited clinical data involving humans is available in literature to demonstrate favorable eff ;ects of phyto-constituents on various types of skin carcinomas yet the topical treatment with these plant derived anticancer phytochemicals is very promising. There are various mechanisms and pathways responsible for antitumor activity of plant derived medicinal compounds such as loss of mitochondrial membrane potential, release of cytochrome-c, Down regulation of Anti-apoptotic proteins and Up regulation of pro-apoptotic proteins, Activation of Caspase, Fas, FADD, p53 and c-Jun signaling pathway, Inhibition of Akt signaling pathway, phosphorylation of ERK, P13K, Raf, survivin gene, STAT 3 and NF-kB. In-vitro testing of skin cancer cell lines models offers the opportunity for identifying mechanisms of action of compounds from plant origin against variety of skin related cancers. This review thus aims at providing an overview of plant derived anti-cancer compounds which have been reported to show promising anti-carcinogenic effects against various skin cancer cell lines and on animal models. Phytochemicals that are discussed in this review include steroids, coumarines, trepenes, essential oils, alkaloids, esters, ethers, resins, phenols and flavonoids. This review also provides information about marketed formulations developed so far from plant derived compounds for skin cancer prevention and treatment.


Assuntos
Antineoplásicos/uso terapêutico , Plantas/química , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Compostos Fitoquímicos/uso terapêutico , Fitoterapia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA