Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Evid Based Integr Med ; 27: 2515690X211073709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35037519

RESUMO

Malaria affects about half of the world's population. The sub-Saharan African region is the most affected. Plant natural products have been a major source of antimalarial drugs; the first (quinine) and present (artemisinin) antimalarials are of natural product origin. Some secondary metabolites demonstrate adjuvant antioxidant effects and selective activity. The focus of this study was to investigate the anti-plasmodial activity, cytotoxicities and antioxidant properties of eight (8) Ghanaian medicinal plants. The anti-plasmodial activity was determined using the SYBR green assay and the tetrazolium-based colorimetric assay (MTT) was employed to assess cytotoxicity of extracts to human RBCs and HL-60 cells. Antioxidant potential of plant extracts was evaluated using Folin-Ciocalteu and superoxide dismutase assays. Phytochemical contstituents of the plant extracts were also assessed. All the extracts demonstrated anti-plasmodial activities at concentrations <50 µg/ml. Parkia clappertoniana and Terminalia ivorensis elicited the strongest anti-plasmodial activities with 50% inhibitory concentrations (IC50) of 1.13 µg/ml and 0.95 µg/ml, respectively. This is the first report on anti-plasmodial activities of Baphia nitida, Tabernaemontana crassa and Treculia Africana. T. Africana showed moderate anti-plasmodial activity with IC50 value of 6.62 µg/mL. Extracts of P. clappertoniana, T. Africana and T. ivorensis (0.4 mg/mL) showed >50% antioxidant effect (SOD). The extracts were not cytotoxicity towards RBCs at the concentration tested (200 µg/ml) but were weakly cytotoxic to HL-60 cell. Selectivity indices of most of the extracts were greater than 10. Our results suggest that most of the plant extracts have strong anti-plasmodial activity and antioxidant activity which warrants further investigations.


Assuntos
Plantas Medicinais , Antioxidantes/farmacologia , Gana , Humanos , Plantas Medicinais/química , Plasmodium berghei , Plasmodium falciparum
2.
Int J Mycobacteriol ; 10(1): 60-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707373

RESUMO

Background: Buruli ulcer (BU) is a neglected tropical disease caused by the Mycobacterium ulcerans. BU is an endemic disease in many communities in sub-Saharan Africa where population have long history of using medicinal plants for treatment. Indeed, several medicinal plants have been documented against BU and related conditions. The present study was undertaken to prove the efficacy of seven medicinal plants documented for the treatment of mycobacterial infections and related symptoms in Ghana. Method: Antimycobacterial activity of the stem bark extracts and reference control drugs were conducted using the resazurin microtiter assay (REMA) assay method in clear round bottom 96-well microtiter plates. The extracts that showed anti-mycobacterium ulcerans activity were assessed for cytotoxicity using the Alamar blue assay. Results: Overall, The Cryptolepis sanguinolenta root aqueous extract exhibited the highest antimycobacterial activity (MIC=64 µg/mL) followed by Cleistopholis patens (MIC=256 µg/mL). Based on the marked activity of the Cryptolepis sanguinolenta extracts, pure cryptolepine, its major metabolite recorded a MIC value of 32 µg/mL. These extracts with considerable antimycobacterial activity showed 50% cytotoxic concentration (CC50) ranging from 94 to 384 µg/mL. Conclusions: Thus, Cleistopholis patens and Cryptolepis sanguinolenta are primed for further studies and could afford novel drugs for the mitigation of buruli ulcer disease.


Assuntos
Alcaloides , Úlcera de Buruli , Mycobacterium ulcerans , Plantas Medicinais , Úlcera de Buruli/tratamento farmacológico , Humanos , Extratos Vegetais/farmacologia
3.
Adv Pharmacol Pharm Sci ; 2020: 8821905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163963

RESUMO

The majority of indigenes in the rural areas of Ghana use herbal medicines for their primary health care. In this study, an ethnobotanical survey was undertaken to document medicinal plants used by traditional healers in the Ejisu-Juaben district in the Ashanti region of Ghana to treat infections and to further investigate the antibiofilm formation properties of selected plants in resisting pathogenic bacteria. Seventy medicinal plants used by traditional practitioners for the treatment of skin infections and wounds were documented from the ethnobotanical survey. Forty out of the seventy plants were collected and their methanol extracts evaluated for antimicrobial activity by the agar diffusion assay. Extracts that showed antibacterial activity were tested for biofilm inhibitory activity, and the most active plant was subsequently purified to obtain the active constituents. Biofilm formation was significantly mitigated by petroleum ether, ethyl acetate, and methanol extracts of Holarrhena floribunda stem bark. Bioassay-guided fractionation of an alkaloidal extract prepared from the methanol fraction led to the isolation of three steroidal alkaloids, namely, holonamine, holadienine, and conessine. The isolated compounds demonstrated varying degrees of biofilm formation inhibitory properties. The current study reveals that screening of indigenous medicinal plants could unravel potential leads to salvage the declining efficacy of conventional antibiotics. Holarrhena floribunda stem bark extract has strong biofilm formation inhibition properties, which could be attributed to the presence of steroidal alkaloids.

4.
J Evid Based Integr Med ; 23: 2515690X18810001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30392393

RESUMO

Drug interactions are key reasons for adverse drug reactions and attrition from market. Major infectious diseases causing morbidity/mortality in Ghana are malaria, tuberculosis, and HIV/AIDS. In this study, plant medicines commonly used to treat/manage these diseases in Ghana were investigated for their potential to modulate rat cytochrome P450 enzyme activities. Fluorescence and high-performance liquid chromatography-based assays were used to assess effects of antimalarial plant medicines, Fever (FEV), Mal-TF (MAL), and Kantinka terric (KT); anti-TB medicines, Chestico (CHES), CA + ST Pains + HWNT (TF), and Kantinka herbatic (KHB); and anti-HIV/AIDS medicines, Wabco (WAB), AD + T/AD (LIV) and Kantinka BA (KBA) on rat liver microsomal cytochrome P450 enzyme activities. Effects of medicines on rat biochemical and hematological parameters were also assessed. Generally, the medicines altered microsomal CYP1A1/1A2, CYP2B1/2B2, CYP2C9, and CYP2D6 activities. Only KBA elicited an increase (80%) in CYP1A1/1A2 activity. FEV, MAL, CHES, WAB, and LIV strongly inhibited the enzyme activity. All the medicines significantly inhibited CYP2C9 (24%-80%) activity. CYP2D6 activity increased after treatment with MAL, KBA, LIV, and TF. Also, MAL, WAB, LIV, KHB, and CHES increased CYP2B1/2B2 activity, while KT decrease the activity. Generally, the medicines altered liver function in the rats. Cholesterol levels declined after KBA treatment only. White and red blood cell counts, hemoglobin and hematocrit levels were significantly reduced in KT- and KBA-treated rats. Our results suggest that use of the medicines could have implications for drug interactions and safety, particularly if the medicines are administered over prolonged periods. Further investigations are imperative to establish clinical relevance of these results.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Antimaláricos/administração & dosagem , Antituberculosos/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Humanos , Malária/tratamento farmacológico , Malária/enzimologia , Masculino , Microssomos Hepáticos/enzimologia , Ratos , Ratos Sprague-Dawley , Tuberculose/tratamento farmacológico , Tuberculose/enzimologia
5.
Phytother Res ; 32(8): 1617-1630, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29733118

RESUMO

Trypanosomiasis, leishmaniasis, and malaria are protozoan infections of public health importance with thousands of new cases recorded annually. Control of these infection(s) with existing chemotherapy is limited by drug toxicity, lengthy parenteral treatment, affordability, and/or the emergence of resistant strains. Medicinal plants on the other hand are used in the treatment of various infectious diseases although their chemical properties are not fully evaluated. In this study, we screened 112 crude extracts from 72 selected Ghanaian medicinal plants for anti-Trypanosoma, anti-Leishmania, and anti-Plasmodium activities in vitro and investigated their mechanisms of action. Twenty-three extracts from 20 plants showed significant antiprotozoan activity against at least 1 of 3 protozoan parasites screened with IC50 values less than 20 µg/ml. Eleven extracts showed high anti-Trypanosoma activity with Bidens pilosa whole plant and Morinda lucida leaf extracts recording the highest activities. Their IC50 (selectivity index [SI]) values were 5.51 µg/ml (35.00) and 5.96 µg/ml (13.09), respectively. Nine extracts had high anti-Leishmania activity with Annona senegalensis and Cassia alata leaf extracts as the most active. Their IC50 (SI) values were 10.8 µg/ml (1.50) and 10.1 µg/ml (0.37), respectively. Six extracts had high anti-Plasmodium activity with the leaf and stem-bark extracts of Terminalia ivorensis recording the highest activity. Their IC50 (SI) values were 7.26 µg/ml (129.36) and 17.45 µg/ml (17.17), respectively. Only M. lucida at 25 µg/ml induced significant apoptosis-like cell death in Trypanosoma parasites. Anti-Leishmania active extracts induced varying morphological changes in Leishmania parasites such as multiple nuclei and/or kinetoplast, incomplete flagella division, or nuclear fragmentation. Active extracts may be potential sources for developing new chemotherapy against these infections.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Apoptose , Gana , Humanos , Células Jurkat
6.
Antimicrob Agents Chemother ; 60(6): 3283-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953191

RESUMO

Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 µM, 3.75 µM, and 0.43 µM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals.


Assuntos
Antiprotozoários/farmacologia , Iridoides/farmacologia , Morinda/química , Plantas Medicinais/química , Tripanossomicidas/farmacologia , Animais , Antiprotozoários/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Iridoides/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tripanossomicidas/química , Trypanosoma/efeitos dos fármacos , Trypanosoma/patogenicidade , Tripanossomíase Africana/fisiopatologia
7.
Bioorg Med Chem Lett ; 25(15): 3030-3, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048790

RESUMO

Human African trypanosomiasis (HAT), commonly known as sleeping sickness has remained a serious health problem in many African countries with thousands of new infected cases annually. Chemotherapy, which is the main form of control against HAT has been characterized lately by the viewpoints of toxicity and drug resistance issues. Recently, there have been a lot of emphases on the use of medicinal plants world-wide. Morinda lucida Benth. is one of the most popular medicinal plants widely distributed in Africa and several groups have reported on its anti-protozoa activities. In this study, we have isolated one novel tetracyclic iridoid, named as molucidin, from the CHCl3 fraction of the M. lucida leaves by bioassay-guided fractionation and purification. Molucidin was structurally elucidated by (1)H and (13)C NMR including HMQC, HMBC, H-H COSY and NOESY resulting in tetracyclic iridoid skeleton, and its absolute configuration was determined. We have further demonstrated that molucidin presented a strong anti-trypanosomal activity, indicating an IC50 value of 1.27 µM. The cytotoxicity study using human normal and cancer cell lines indicated that molucidin exhibited selectivity index (SI) against two normal fibroblasts greater than 4.73. Furthermore, structure-activity relationship (SAR) study was undertaken with molucidin and oregonin, which is identical to anti-trypanosomal active components of Alnus japonica. Overlapping analysis of the lowest energy conformation of molucidin with oregonin suggested a certain similarities of aromatic rings of both oregonin and molucidin. These results contribute to the future drug design studies for HAT.


Assuntos
Iridoides/química , Iridoides/farmacologia , Morinda/química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Iridoides/isolamento & purificação , Modelos Moleculares , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Tripanossomíase Africana/tratamento farmacológico
8.
Biochem Biophys Res Commun ; 459(2): 288-293, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25727021

RESUMO

Despite remarkable advances in combination antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) infection remains incurable due to the incomplete elimination of the replication-competent virus, which persists in latent reservoirs. Strategies for targeting HIV reservoirs for eradication that involves reactivation of latent proviruses while protecting uninfected cells by cART are urgently needed for cure of HIV infection. We screened medicinal plant extracts for compounds that could reactivate the latent HIV-1 provirus and identified a procyanidin trimer C1 derived from Theobroma cacao as a potent activator of the provirus in human T cells latently infected with HIV-1. This reactivation largely depends on the NF-κB and MAPK signaling pathways because either overexpression of a super-repressor form of IκBα or pretreatment with a MEK inhibitor U0126 diminished provirus reactivation by C1. A pan-PKC inhibitor significantly blocked the phorbol ester-induced but not the C1-induced HIV-1 reactivation. Although C1-induced viral gene expression persisted for as long as 48 h post-stimulation, NF-κB-dependent transcription peaked at 12 h post-stimulation and then quickly declined, suggesting Tat-mediated self-sustainment of HIV-1 expression. These results suggest that procyanidin C1 trimer is a potential compound for reactivation of latent HIV-1 reservoirs.


Assuntos
Biflavonoides/farmacologia , Cacau/química , Catequina/farmacologia , HIV-1/efeitos dos fármacos , Proantocianidinas/farmacologia , Provírus/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Biflavonoides/química , Biflavonoides/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Indóis/farmacologia , Células Jurkat , Sistema de Sinalização das MAP Quinases , Maleimidas/farmacologia , Testes de Sensibilidade Microbiana , Modelos Biológicos , NF-kappa B/metabolismo , Fitoterapia , Plantas Medicinais/química , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Provírus/fisiologia , Latência Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA