Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650602

RESUMO

Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1ß, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.


Assuntos
Anti-Inflamatórios , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacologia , Fitoterapia , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Administração Oral , Animais , Antioxidantes/metabolismo , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Neutrófilos , Peroxidase/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Sesquiterpenos/isolamento & purificação
2.
Sci Rep ; 7(1): 11633, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912474

RESUMO

Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Here, we investigated the anticancer effect of Rhus coriaria extract (RCE) on HT-29 and Caco-2 human colorectal cancer cells. We found that RCE significantly inhibited the viability and colony growth of colon cancer cells. Moreover, RCE induced Beclin-1-independent autophagy and subsequent caspase-7-dependent apoptosis. Blocking of autophagy by chloroquine significantly reduced RCE-induced cell death, while blocking of apoptosis had no effect on RCE-induced cell death. Mechanistically, RCE inactivated the AKT/mTOR pathway by promoting the proteasome-dependent degradation of both proteins. Strikingly, we also found that RCE targeted Beclin-1, p53 and procaspase-3 to degradation. Proteasome inhibition by MG-132 not only restored these proteins to level comparable to control cells, but also reduced RCE-induced cell death and blocked the activation of autophagy and apoptosis. The proteasomal degradation of mTOR, which occurred only 3 hours post-RCE treatment was concomitant with an overall increase in the level of ubiquitinated proteins and translated stimulation of proteolysis by the proteasome. Our findings demonstrate that Rhus coriaria possesses strong anti-colon cancer activity through stimulation of proteolysis as well as induction of autophagic and apoptotic cell death, making it a potential and valuable source of novel therapeutic cancer drug.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Neoplasias do Colo/metabolismo , Extratos Vegetais/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Rhus/química , Animais , Antineoplásicos Fitogênicos , Autofagia/genética , Proteína Beclina-1/genética , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Camundongos , Extratos Vegetais/química , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
3.
Cell Physiol Biochem ; 33(5): 1400-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24853661

RESUMO

BACKGROUND: Pistacia lentiscus (Anacardiaceae) is a flowering plant traditionally used in the treatment of various skin, respiratory, and gastrointestinal disorders. The aim of this study was to assess whether Pistacia lentiscus oil has any short term toxic effects in vivo and in vitro. METHODS: Pistacia lentiscus oil (100µl) was administered orally into mice for 5 days. RESULTS: Measurements of body weight did not show any weight loss. Serum concentration of LDH did not show any significant statistical difference when compared to control mice. Similarly, blood, kidney or liver function tests showed no toxicity with Pistacia lentiscus oil when compared to the control group. Examination of gastrointestinal tissues sections revealed similar structural features with no difference in cell proliferation. In this context, pharmacological dilutions of Pistacia lentiscus oil (10(-6) - 10(-3)) did not affect the viability (cell death and proliferation) of mouse gastric stem cells, human colorectal cancer cells HT29, human hepatoma cells HepG2. However, it appears that at the dose and time point studied, Pistacia lentiscus oil treatment has targeted various cytochrome P450s and has specifically inhibited the activities and the expression of CYP2E1, CYP3A4, CYP1A1 and CYP1A2 differentially in different tissues. Our results also demonstrate that there is no appreciable effect of Pistacia lentiscus oil on the GSH-dependent redox homoeostasis and detoxification mechanism in the tissues. CONCLUSION: These data suggest a good safety profile of short term oral use of Pistacia lentiscus oil as a monotherapy in the treatment of various skin, respiratory, and gastrointestinal disorders. However, due to its inhibitory effect of various cytochrome P450s and mainly CYP3A4, this might have implications on the bioavailability and metabolism of drugs taken in combination with Pistacia lentiscus oil. More attention is needed when Pistacia lentiscus oil is intended to be uses in combination with other pharmacological agents in order to avoid potential drug-drug interaction leading to toxicity. This study will help in safer use of Pistacia lentiscus oil for therapeutic purpose.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Pistacia/química , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Administração Oral , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Frutas/química , Células HT29 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos , Especificidade de Órgãos/efeitos dos fármacos , Óleos de Plantas/química , Relação Estrutura-Atividade
4.
PLoS One ; 8(7): e68808, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874773

RESUMO

BACKGROUND: We have recently reported that Origanummajorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O. majorana on the migration, invasion and tumor growth of these cells. RESULTS: We demonstrate that non-cytotoxic concentrations of O. majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O. majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O. majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O. majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9). ELISA, RT-PCR and Western blot results revealed that O. majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR), ICAM-1 and VEGF. Further investigation revealed that O. majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO) production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O. majorana promotes inhibition of tumor growth and metastasis in vivo. CONCLUSION: Our findings identify Origanummajorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Origanum , Extratos Vegetais/farmacologia , Animais , Neoplasias da Mama/metabolismo , Células Cultivadas , Embrião de Galinha , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Metástase Neoplásica , Origanum/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
PLoS One ; 8(2): e56649, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451065

RESUMO

BACKGROUND: In the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231. RESULTS: We found that O. majorana extract (OME) was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on the concentration used, that OME elicited different effects on the MDA-MB 231 cells. Concentrations of 150 and 300 µg/mL induced an accumulation of apoptotic-resistant population of cells arrested in mitotis and overexpressing the cyclin-dependent kinase inhibitor, p21 and the inhibitor of apoptosis, survivin. On the other hand, higher concentrations of OME (450 and 600 µg/mL) triggered a massive apoptosis through the extrinsic pathway, including the activation of tumor necrosis factor-α (TNF-α), caspase 8, caspase 3, and cleavage of PARP, downregulation of survivin as well as depletion of the mutant p53 in MDA-MB-231 cells. Furthermore, OME induced an upregulation of γ-H2AX, a marker of double strand DNA breaks and an overall histone H3 and H4 hyperacetylation. CONCLUSION: Our findings provide strong evidence that O. majorana may be a promising chemopreventive and therapeutic candidate against cancer especially for highly invasive triple negative p53 mutant breast cancer; thus validating its complementary and alternative medicinal use.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Mitose/efeitos dos fármacos , Origanum/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Survivina , Fator de Necrose Tumoral alfa/genética , Proteína Supressora de Tumor p53/genética
6.
J Pept Sci ; 18(4): 270-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22392897

RESUMO

The emergence of strains of multidrug-resistant Gram-negative bacteria mandates a search for new types of antimicrobial agents. Alyteserin-2a (ILGKLLSTAAGLLSNL.NH2) is a cationic, α-helical peptide, first isolated from skin secretions of the midwife toad, Alytes obstetricans, which displays relatively weak antimicrobial and haemolytic activities. Increasing the cationicity of alyteserin-2a while maintaining amphipathicity by the substitution Gly¹¹ → Lys enhanced the potency against both Gram-negative and Gram-positive bacteria by between fourfold and 16-fold but concomitantly increased cytotoxic activity against human erythrocytes by sixfold (mean concentration of peptide producing 50% cell death; LC50=24 µM). Antimicrobial potency was increased further by the additional substitution Ser7 →Lys, but the resulting analogue remained cytotoxic to erythrocytes (LC50=38 µM). However, the peptide containing D-lysine at positions 7 and 11 showed high potency against a range of Gram-negative bacteria, including multidrug-resistant strains of Acinetobacter baumannii and Stenotrophomonas maltophilia (minimum inhibitory concentration = 8 µM) but appreciably lower haemolytic activity (LC50=185 µM) and cytotoxicity against A549 human alveolar basal epithelial cells (LC50=65 µM). The analogue shows potential for treatment of nosocomial pulmonary infections caused by bacteria that have developed resistance to commonly used antibiotics.


Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Pele/química , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/toxicidade , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Anuros , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Eritrócitos/efeitos dos fármacos , Humanos , Dose Letal Mediana , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA