Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 241(5): 1985-1997, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189091

RESUMO

Adaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, Pi ; metabolite P, PM ; nucleic acid P, PN ; lipid P, PL ; and residual P, PR ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs. Species at the undisturbed low-P site generally exhibited lower concentrations of total leaf P ([Ptotal ]), primarily associated with lower concentrations of Pi , and PN . The relative allocation of P to each fraction varied little among sites, except that higher PL per [Ptotal ] (rPL ) was recorded at the undisturbed low-P site than at the high-P site. This higher rPL , reflecting relative allocation to membranes, was primarily associated with lower concentrations of leaf nitrogen at the undisturbed low-P site than at the high-P site. Associations between leaf P fractions and leaf nitrogen may provide a basis for understanding the variation in plant ecological strategies dependent on soil P availability.


Assuntos
Fósforo , Plantas , Humanos , Austrália , Fósforo/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Nitrogênio/metabolismo , Solo , Folhas de Planta/metabolismo
2.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298579

RESUMO

Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Oryza/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Secas
3.
Plant Cell Environ ; 45(4): 1242-1256, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092006

RESUMO

Heat stress specifically affects fertility by impairing pollen viability but cotton wild relatives successfully reproduce in hot savannas where they evolved. An Australian arid-zone cotton (Gossypium robinsonii) was exposed to heat events during pollen development then mature pollen was subjected to deep proteomic analysis using 57 023 predicted genes from a genomic database we assembled for the same species. Three stages of pollen development, including tetrads (TEs), uninucleate microspores (UNs) and binucleate microspores (BNs) were exposed to 36°C or 40°C for 5 days and the resulting mature pollen was collected at anthesis (p-TE, p-UN and p-BN, respectively). Using the sequential windowed acquisition of all theoretical mass spectra proteomic analysis, 2704 proteins were identified and quantified across all pollen samples analysed. Proteins predominantly decreased in abundance at all stages in response to heat, particularly after exposure of TEs to 40°C. Functional enrichment analyses demonstrated that extreme heat increased the abundance of proteins that contributed to increased messenger RNA splicing via spliceosome, initiation of cytoplasmic translation and protein refolding in p-TE40. However, other functional categories that contributed to intercellular transport were inhibited in p-TE40, linked potentially to Rab proteins. We ascribe the resilience of reproductive processes in G. robinsonii at temperatures up to 40°C, relative to commercial cotton, to a targeted reduction in protein transport.


Assuntos
Calor Extremo , Gossypium , Austrália , Pólen , Proteômica
4.
Plant J ; 109(4): 965-979, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837283

RESUMO

Reproductive performance in plants is impaired as maximum temperatures consistently approach 40°C. However, the timing of heatwaves critically affects their impact. We studied the molecular responses during pollen maturation in cotton to investigate the vulnerability to high temperature. Tetrads (TEs), uninucleate and binucleate microspores, and mature pollen were subjected to SWATH-MS and RNA-seq analyses after exposure to 38/28°C (day/night) for 5 days. The results indicated that molecular signatures were downregulated progressively in response to heat during pollen development. This was even more evident in leaves, where three-quarters of differentially changed proteins decreased in abundance during heat. Functional analysis showed that translation of genes increased in TEs after exposure to heat; however, the reverse pattern was observed in mature pollen and leaves. For example, proteins involved in transport were highly abundant in TEs whereas in later stages of pollen formation and leaves, heat suppressed synthesis of proteins involved in cell-to-cell communication. Moreover, a large number of heat shock proteins were identified in heat-affected TEs, but these proteins were less abundant in mature pollen and leaves. We speculate that the sensitivity of TE cells to heat is related to high rates of translation targeted to pathways that might not be essential for thermotolerance. Molecular signatures during stages of pollen development after heatwaves could provide markers for future genetic improvement.


Assuntos
Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Pólen/genética , Termotolerância/genética , Gossypium/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Folhas de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteômica , Termotolerância/fisiologia , Transcriptoma
5.
Plant Cell Environ ; 44(7): 2150-2166, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33047317

RESUMO

The development of gametes in plants is acutely susceptible to heatwaves as brief as a few days, adversely affecting pollen maturation and reproductive success. Pollen in cotton (Gossypium hirsutum) was differentially affected when tetrad and binucleate stages were exposed to heat, revealing new insights into the interaction between heat and pollen development. Squares were tagged and exposed to 36/25°C (day/night, moderate heat) or 40/30°C (day/night, extreme heat) for 5 days. Mature pollen grains and leaves were collected for physiological and proteomic responses. While photosynthetic competence was not compromised even at 40°C, leaf tissues became leakier. In contrast, pollen grains were markedly smaller after the tetrad stage was exposed to 40°C and boll production was reduced by 65%. Sugar levels in pollen grains were elevated after exposure to heat, eliminating carbohydrate deficits as a likely cause of poor reproductive capacity. Proteomic analysis of pure pollen samples revealed a particularly high abundance of 70-kDa heat shock (Hsp70s) and cytoskeletal proteins. While short-term bursts of heat had a minor impact on leaves, male gametophyte development was profoundly damaged. Cotton acclimates to maxima of 36°C at both the vegetative and reproductive stages but 5-days exposure to 40°C significantly impairs reproductive development.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Eletrólitos/metabolismo , Proteínas de Choque Térmico/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Pólen/metabolismo , Sementes/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Termotolerância/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA