Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(45): 16978-16991, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586033

RESUMO

Transition metals serve as an important class of micronutrients that are indispensable for bacterial physiology but are cytotoxic when they are in excess. Bacteria have developed exquisite homeostatic systems to control the uptake, storage, and efflux of each of biological metals and maintain a thermodynamically balanced metal quota. However, whether the pathways that control the homeostasis of different biological metals cross-talk and render cross-resistance or sensitivity in the host-pathogen interface remains largely unknown. Here, we report that zinc (Zn) excess perturbs iron (Fe) and copper (Cu) homeostasis in Escherichia coli, resulting in increased Fe and decreased Cu levels in the cell. Gene expression analysis revealed that Zn excess transiently up-regulates Fe-uptake genes and down-regulates Fe-storage genes and thereby increases the cellular Fe quota. In vitro and in vivo protein-DNA binding assays revealed that the elevated intracellular Fe poisons the primary Cu detoxification transcription regulator CueR, resulting in dysregulation of its target genes copA and cueO and activation of the secondary Cu detoxification system CusSR-cusCFBA Supplementation with the Fe chelator 2,2'-dipyridyl (DIP) or with the reducing agent GSH abolished the induction of cusCFBA during Zn excess. Consistent with the importance of this metal homeostatic network in cell physiology, combined metal treatment, including simultaneously overloading cells with both Zn (0.25 mm) and Cu (0.25 mm) and sequestering Fe with DIP (50 µm), substantially inhibited E. coli growth. These results advance our understanding of bacterial metallobiology and may inform the development of metal-based antimicrobial regimens to manage infectious diseases.


Assuntos
Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Ferro/metabolismo , Zinco/farmacologia , Transporte Biológico/efeitos dos fármacos , Escherichia coli/citologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Estresse Oxidativo/efeitos dos fármacos
2.
J Am Chem Soc ; 135(40): 15165-73, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24063668

RESUMO

Iron is an essential metal for living organisms, but misregulation of its homeostasis at the cellular level can trigger detrimental oxidative and/or nitrosative stress and damage events. Motivated to help study the physiological and pathological consequences of biological iron regulation, we now report a reaction-based strategy for monitoring labile Fe(2+) pools in aqueous solution and living cells. Iron Probe 1 (IP1) exploits a bioinspired, iron-mediated oxidative C-O bond cleavage reaction to achieve a selective turn-on response to Fe(2+) over a range of cellular metal ions in their bioavailable forms. We show that this first-generation chemical tool for fluorescence Fe(2+) detection can visualize changes in exchangeable iron stores in living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Moreover, IP1 can be used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin, providing a starting point for further investigations of iron signaling and stress events in living systems as well as future probe development.


Assuntos
Corantes Fluorescentes/química , Ferro/metabolismo , Imagem Molecular/métodos , Ácido Ascórbico/farmacologia , Sobrevivência Celular , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Células Hep G2 , Hepcidinas/farmacologia , Humanos , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA