Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 121(3): 893-907, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625004

RESUMO

Electrophysiological and imaging studies from humans suggest that the phantom sound of tinnitus is associated with abnormal thalamocortical neural oscillations (dysrhythmia) and enhanced gamma band activity in the auditory cortex. However, these models have seldom been tested in animal models where it is possible to simultaneously assess the neural oscillatory activity within and between the thalamus and auditory cortex. To explore this issue, we used multichannel electrodes to examine the oscillatory behavior of local field potentials recorded in the rat medial geniculate body (MBG) and primary auditory cortex (A1) before and after administering a dose of sodium salicylate (SS) that reliably induces tinnitus. In the MGB, SS reduced theta, alpha, and beta oscillations and decreased coherence (synchrony) between electrode pairs in theta, alpha, and beta bands but increased coherence in the gamma band. Within A1, SS significantly increased gamma oscillations, decreased theta power, and decreased coherence between electrode pairs in theta and alpha bands but increased coherence in the gamma band. When coherence was measured between one electrode in the MGB and another in A1, SS decreased coherence in beta, alpha, and theta bands but increased coherence in the gamma band. SS also increased cross-frequency coupling between the phase of theta oscillations in the MGB and amplitude of gamma oscillations in A1. Altogether, our results suggest that SS treatment fundamentally alters the manner in which thalamocortical circuits communicate, leading to excessive cortical gamma power and synchronization, neurophysiological changes implicated in tinnitus. Our data provide support for elements of both the thalamocortical dysrhythmia (TD) and synchronization by loss of inhibition (SLIM) models of tinnitus, demonstrating that increased cortical gamma band activity is associated with both enhanced theta-gamma coupling as well as decreases alpha power/coherence between the MGB and A1. NEW & NOTEWORTHY There are no effective drugs to alleviate the phantom sound of tinnitus because the physiological mechanisms leading to its generation are poorly understood. Neural models of tinnitus suggest that it arises from abnormal thalamocortical oscillations, but these models have not been extensively tested. This article identifies abnormal thalamocortical oscillations in a drug-induced tinnitus model. Our findings open up new avenues of research to investigate whether cellular mechanisms underlying thalamocortical oscillations are causally linked to tinnitus.


Assuntos
Córtex Auditivo/fisiopatologia , Ondas Encefálicas , Tálamo/fisiopatologia , Zumbido/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Salicilato de Sódio/toxicidade , Zumbido/etiologia
2.
Neuroscience ; 407: 93-107, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30292765

RESUMO

The central gain model of hyperacusis proposes that loss of auditory input can result in maladaptive neuronal gain increases in the central auditory system, leading to the over-amplification of sound-evoked activity and excessive loudness perception. Despite the attractiveness of this model, and supporting evidence for it, a critical test of the central gain theory requires that changes in sound-evoked activity be explicitly linked to perceptual alterations of loudness. Here we combined an operant conditioning task that uses a subject's reaction time to auditory stimuli to produce reliable measures of loudness growth with chronic electrophysiological recordings from the auditory cortex and inferior colliculus of awake, behaviorally-phenotyped animals. In this manner, we could directly correlate daily assessments of loudness perception with neurophysiological measures of sound encoding within the same animal. We validated this novel psychophysical-electrophysiological paradigm with a salicylate-induced model of hearing loss and hyperacusis, as high doses of sodium salicylate reliably induce temporary hearing loss, neural hyperactivity, and auditory perceptual disruptions like tinnitus and hyperacusis. Salicylate induced parallel changes to loudness growth and evoked response-intensity functions consistent with temporary hearing loss and hyperacusis. Most importantly, we found that salicylate-mediated changes in loudness growth and sound-evoked activity were correlated within individual animals. These results provide strong support for the central gain model of hyperacusis and demonstrate the utility of using an experimental design that allows for within-subject comparison of behavioral and electrophysiological measures, thereby making inter-subject variability a strength rather than a limitation.


Assuntos
Perda Auditiva/fisiopatologia , Hiperacusia/fisiopatologia , Percepção Sonora/fisiologia , Salicilato de Sódio/farmacologia , Estimulação Acústica/métodos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Feminino , Audição/efeitos dos fármacos , Audição/fisiologia , Perda Auditiva/tratamento farmacológico , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/fisiopatologia , Percepção Sonora/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Roedores
3.
Hear Res ; 353: 197-203, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705607

RESUMO

Hyperacusis is a loudness hypersensitivity disorder in which moderate-intensity sounds are perceived as extremely loud, aversive and/or painful. To assess the aversive nature of sounds, we developed an Active Sound Avoidance Paradigm (ASAP) in which rats altered their place preference in a Light/Dark shuttle box in response to sound. When no sound (NS) was present, rats spent more than 95% of the time in the Dark Box versus the transparent Light Box. However, when a 60 or 90 dB SPL noise (2-20 kHz, 2-8 kHz, or 16-20 kHz bandwidth) was presented in the Dark Box, the rats'' preference for the Dark Box significantly decreased. Percent time in the dark decreased as sound intensity in the Dark Box increased from 60 dB to 90 dB SPL. Interestingly, the magnitude of the decrease was not a monotonic function of intensity for the 16-20 kHz noise and not related to the bandwidth of the 2-20 kHz and 2-8 kHz noise bands, suggesting that sound avoidance is not solely dependent on loudness but the aversive quality of the noise as well. Afterwards, we exposed the rats for 28 days to a 16-20 kHz noise at 102 dB SPL; this exposure produced a 30-40 dB permanent threshold shift at 16 and 32 kHz. Following the noise exposure, the rats were then retested on the ASAP paradigm. High-frequency hearing loss did not alter Dark Box preference in the no-sound condition. However, when the 2-20 kHz or 2-8 kHz noise was presented at 60 or 90 dB SPL, the rats avoided the Dark Box significantly more than they did before the exposure, indicating these two noise bands with energy below the region of hearing loss were perceived as more aversive. In contrast, when the 16-20 kHz noise was presented at 60 or 90 dB SPL, the rats remained in the Dark Box presumably because the high-frequency hearing loss made 16-20 kHz noise less audible and less aversive. These results indicate that when rats develop a high-frequency hearing loss, they become less tolerant of low frequency noise, i.e., high intensity sounds are perceived as more aversive and should be avoided.


Assuntos
Aprendizagem da Esquiva , Comportamento Animal , Perda Auditiva Provocada por Ruído/psicologia , Hiperacusia/psicologia , Percepção Sonora , Ruído/efeitos adversos , Estimulação Acústica , Animais , Limiar Auditivo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Hiperacusia/fisiopatologia , Masculino , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA