Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Neurosci ; 24(8): 1132-1141, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168339

RESUMO

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Sinais (Psicologia) , Masculino , Camundongos , Somatostatina/metabolismo
2.
Neuron ; 95(5): 1181-1196.e8, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858620

RESUMO

Basal ganglia (BG) circuits orchestrate complex motor behaviors predominantly via inhibitory synaptic outputs. Although these inhibitory BG outputs are known to reduce the excitability of postsynaptic target neurons, precisely how this change impairs motor performance remains poorly understood. Here, we show that optogenetic photostimulation of inhibitory BG inputs from the globus pallidus induces a surge of action potentials in the ventrolateral thalamic (VL) neurons and muscle contractions during the post-inhibitory period. Reduction of the neuronal population with this post-inhibitory rebound firing by knockout of T-type Ca2+ channels or photoinhibition abolishes multiple motor responses induced by the inhibitory BG input. In a low dopamine state, the number of VL neurons showing post-inhibitory firing increases, while reducing the number of active VL neurons via photoinhibition of BG input, effectively prevents Parkinson disease (PD)-like motor symptoms. Thus, BG inhibitory input generates excitatory motor signals in the thalamus and, in excess, promotes PD-like motor abnormalities. VIDEO ABSTRACT.


Assuntos
Globo Pálido/fisiologia , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Oxirredutases do Álcool/genética , Animais , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , Dopamina/metabolismo , Distonia/dietoterapia , Distonia/tratamento farmacológico , Distonia/fisiopatologia , Feminino , Globo Pálido/citologia , Globo Pálido/metabolismo , Levodopa/uso terapêutico , Masculino , Erros Inatos do Metabolismo/dietoterapia , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/fisiopatologia , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Transtornos Psicomotores/dietoterapia , Transtornos Psicomotores/tratamento farmacológico , Transtornos Psicomotores/fisiopatologia , Tálamo/citologia
3.
Neuromolecular Med ; 18(3): 364-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27379379

RESUMO

Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT.


Assuntos
Colina/farmacologia , Suplementos Nutricionais , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome de Rett/terapia , Feminino , Humanos , Técnicas In Vitro , Proteína 2 de Ligação a Metil-CpG/genética , Mutação
4.
J Neurosci ; 36(21): 5709-23, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225762

RESUMO

UNLABELLED: Tonic inhibition was imaged in cerebellar granule cells of transgenic mice expressing the optogenetic chloride indicator, Clomeleon. Blockade of GABAA receptors substantially reduced chloride concentration in granule cells due to block of tonic inhibition. This indicates that tonic inhibition is a significant contributor to the resting chloride concentration of these cells. Tonic inhibition was observed not only in granule cell bodies, but also in their axons, the parallel fibers (PFs). This presynaptic tonic inhibition could be observed in slices both at room and physiological temperatures, as well as in vivo, and has many of the same properties as tonic inhibition measured in granule cell bodies. GABA application revealed that PFs possess at least two types of GABAA receptor: one high-affinity receptor that is activated by ambient GABA and causes a chloride influx that mediates tonic inhibition, and a second with a low affinity for GABA that causes a chloride efflux that excites PFs. Presynaptic tonic inhibition regulates glutamate release from PFs because GABAA receptor blockade enhanced both the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs at the PF-Purkinje cell synapse. We conclude that tonic inhibition of PFs could play an important role in regulating information flow though cerebellar synaptic circuits. Such cross talk between phasic and tonic signaling could be a general mechanism for fine tuning of synaptic circuits. SIGNIFICANCE STATEMENT: This paper demonstrates that an unconventional form of signaling, known as tonic inhibition, is found in presynaptic terminals and affects conventional synaptic communication. Our results establish the basic characteristics and mechanisms of presynaptic tonic inhibition and show that it occurs in vivo as well as in isolated brain tissue.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Cerebelo/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Mapeamento Encefálico/métodos , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurotransmissores/metabolismo , Optogenética/métodos , Imagens com Corantes Sensíveis à Voltagem/métodos
5.
J Clin Invest ; 124(3): 1114-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509078

RESUMO

Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution. Here, we used animal models to characterize optogenetic stimulation, which is the optical stimulation of neurons genetically engineered to express the light-gated ion channel channelrhodopsin-2 (ChR2). Optogenetic stimulation of spiral ganglion neurons (SGNs) activated the auditory pathway, as demonstrated by recordings of single neuron and neuronal population responses. Furthermore, optogenetic stimulation of SGNs restored auditory activity in deaf mice. Approximation of the spatial spread of cochlear excitation by recording local field potentials (LFPs) in the inferior colliculus in response to suprathreshold optical, acoustic, and electrical stimuli indicated that optogenetic stimulation achieves better frequency resolution than monopolar electrical stimulation. Virus-mediated expression of a ChR2 variant with greater light sensitivity in SGNs reduced the amount of light required for responses and allowed neuronal spiking following stimulation up to 60 Hz. Our study demonstrates a strategy for optogenetic stimulation of the auditory pathway in rodents and lays the groundwork for future applications of cochlear optogenetics in auditory research and prosthetics.


Assuntos
Estimulação Acústica , Surdez/cirurgia , Optogenética , Animais , Channelrhodopsins , Cóclea/fisiopatologia , Cóclea/cirurgia , Implante Coclear , Estimulação Elétrica , Potenciais Evocados Auditivos , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa , Ratos , Ratos Transgênicos , Ratos Wistar , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/fisiopatologia
6.
Neuron ; 63(5): 657-72, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19755108

RESUMO

Electroclinical uncoupling of neonatal seizures refers to electrographic seizure activity that is not clinically manifest. Uncoupling increases after treatment with Phenobarbital, which enhances the GABA(A) receptor (GABA(A)R) conductance. The effects of GABA(A)R activation depend on the intracellular Cl(-) concentration ([Cl(-)](i)) that is determined by the inward Cl(-) transporter NKCC1 and the outward Cl(-) transporter KCC2. Differential maturation of Cl(-) transport observed in cortical versus subcortical regions should alter the efficacy of GABA-mediated inhibition. In perinatal rat pups, most thalamic neurons maintained low [Cl(-)](i) and were inhibited by GABA. Phenobarbital suppressed thalamic seizure activity. Most neocortical neurons maintained higher [Cl(-)](i), and were excited by GABA(A)R activation. Phenobarbital had insignificant anticonvulsant responses in the neocortex until NKCC1 was blocked. Regional differences in the ontogeny of Cl(-) transport may thus explain why seizure activity in the cortex is not suppressed by anticonvulsants that block the transmission of seizure activity through subcortical networks.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Neocórtex/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Tálamo/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Anticonvulsivantes/farmacologia , Bumetanida/farmacologia , Cloretos/metabolismo , Feminino , Técnicas In Vitro , Masculino , Neocórtex/efeitos dos fármacos , Neocórtex/crescimento & desenvolvimento , Fenobarbital/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Convulsões/tratamento farmacológico , Caracteres Sexuais , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 2 da Família 12 de Carreador de Soluto , Transmissão Sináptica , Tálamo/efeitos dos fármacos , Tálamo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA