Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 20(11): 5036-5053, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34643398

RESUMO

A suboptimal blood vitamin C (ascorbate) level increases the risk of several chronic diseases. However, the detection of hypovitaminosis C is not a simple task, as ascorbate is unstable in blood samples. In this study, we examined the serum proteome of mice lacking the gulonolactone oxidase (Gulo) required for the ascorbate biosynthesis. Gulo-/- mice were supplemented with different concentrations of ascorbate in drinking water, and serum was collected to identify proteins correlating with serum ascorbate levels using an unbiased label-free liquid chromatography-tandem mass spectrometry global quantitative proteomic approach. Parallel reaction monitoring was performed to validate the correlations. We uncovered that the serum proteome profiles differ significantly between male and female mice. Also, unlike Gulo-/- males, a four-week ascorbate treatment did not entirely re-establish the serum proteome profile of ascorbate-deficient Gulo-/- females to the optimal profile exhibited by Gulo-/- females that never experienced an ascorbate deficiency. Finally, the serum proteins involved in retinoid metabolism, cholesterol, and lipid transport were similarly affected by ascorbate levels in males and females. In contrast, the proteins regulating serum peptidases and the protein of the acute phase response were different between males and females. These proteins are potential biomarkers correlating with blood ascorbate levels and require further study in standard clinical settings. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD027019.


Assuntos
Ácido Ascórbico , Proteoma , Animais , Suplementos Nutricionais , Feminino , L-Gulonolactona Oxidase/metabolismo , Masculino , Camundongos , Proteoma/genética , Proteômica
2.
Antioxid Redox Signal ; 34(11): 856-874, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33202145

RESUMO

Significance: Werner syndrome (WS) is a rare autosomal recessive malady typified by a pro-oxidant/proinflammatory status, genetic instability, and by the early onset of numerous age-associated illnesses. The protein malfunctioning in WS individuals (WRN) is a helicase/exonuclease implicated in transcription, DNA replication/repair, and telomere maintenance. Recent Advances: In the last two decades, a series of important biological systems were created to comprehend at the molecular level the effect of a defective WRN protein. Such biological tools include mouse and worm (Caenorhabditis elegans) with a mutation in the Wrn helicase ortholog as well as human WS-induced pluripotent stem cells that can ultimately be differentiated into most cell lineages. Such WS models have identified anomalies related to the hallmarks of aging. Most importantly, vitamin C counteracts these age-related cellular phenotypes in these systems. Critical Issues: Vitamin C is the only antioxidant agent capable of reversing the cellular aging-related phenotypes in those biological systems. Since vitamin C is a cofactor for many hydroxylases and mono- or dioxygenase, it adds another level of complexity in deciphering the exact molecular pathways affected by this vitamin. Moreover, it is still unclear whether a short- or long-term vitamin C supplementation in human WS patients who already display aging-related phenotypes will have a beneficial impact. Future Directions: The discovery of new molecular markers specific to the modified biological pathways in WS that can be used for novel imaging techniques or as blood markers will be necessary to assess the favorable effect of vitamin C supplementation in WS. Antioxid. Redox Signal. 34, 856-874.


Assuntos
Ácido Ascórbico/uso terapêutico , Helicase da Síndrome de Werner/genética , Síndrome de Werner/dietoterapia , Animais , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Caenorhabditis elegans/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Camundongos , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Síndrome de Werner/patologia
3.
Aging (Albany NY) ; 8(3): 458-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26922388

RESUMO

Suboptimal intake of dietary vitamin C (ascorbate) increases the risk of several chronic diseases but the exact metabolic pathways affected are still unknown. In this study, we examined the metabolic profile of mice lacking the enzyme gulonolactone oxidase (Gulo) required for the biosynthesis of ascorbate. Gulo-/- mice were supplemented with 0%, 0.01%, and 0.4% ascorbate (w/v) in drinking water and serum was collected for metabolite measurements by targeted mass spectrometry. We also quantified 42 serum cytokines and examined the levels of different stress markers in liver. The metabolic profiles of Gulo-/- mice treated with ascorbate were different from untreated Gulo-/- and normal wild type mice. The cytokine profiles of Gulo-/-mice, in return, overlapped the profile of wild type animals upon 0.01% or 0.4% vitamin C supplementation. The life span of Gulo-/- mice increased with the amount of ascorbate in drinking water. It also correlated significantly with the ratios of serum arginine/lysine, tyrosine/phenylalanine, and the ratio of specific species of saturated/unsaturated phosphatidylcholines. Finally, levels of hepatic phosphorylated endoplasmic reticulum associated stress markers IRE1α and eIF2α correlated inversely with serum ascorbate and life span suggesting that vitamin C modulates endoplasmic reticulum stress response and longevity in Gulo-/- mice.


Assuntos
Antioxidantes/administração & dosagem , Deficiência de Ácido Ascórbico/sangue , Ácido Ascórbico/administração & dosagem , Longevidade/efeitos dos fármacos , Metaboloma , Aminoácidos/sangue , Animais , Deficiência de Ácido Ascórbico/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Hormônios/sangue , L-Gulonolactona Oxidase/genética , Masculino , Lipídeos de Membrana/sangue , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA