Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; 47(1): 77-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26691019

RESUMO

Increases in antibiotic minimum inhibitory concentrations (MICs) for Pseudomonas aeruginosa during treatment are commonly observed but their relationship to efflux overexpression remains poorly documented. In this study, pairs of first [at time of diagnosis (D0)] and last [during treatment (DL)] P. aeruginosa isolates were obtained from patients treated for suspicion of nosocomial pneumonia. Pair clonality was determined by repetitive extragenic palindromic PCR. Overexpression of mexA and mexX was assessed by real-time PCR, and expression of mexC and mexE was assessed by PCR. Antibiotics received by patients before and during treatment were determined from clinical charts. For D0 isolates, 24% were from patients without antibiotics for 1 month and 64% were negative for mexA/mexX overexpression and mexC/mexE expression. For DL isolates, approximately one-half of the patients had received piperacillin/tazobactam, amikacin, meropenem and/or cefepime, and 17% had received ciprofloxacin (alone or in combination); 38% did not show changes in expression of the four genes, whereas 38% showed increased expression for one gene (mainly mexA or mexX), 19% for two genes (mainly mexA and mexX) and 5% for three or four genes. Isolates overexpressing mexA or mexX had median MICs above EUCAST clinical resistance breakpoints for ciprofloxacin, cefepime and meropenem, or for ciprofloxacin, amikacin, cefepime and meropenem, respectively. mexA or mexX overexpression was statistically significantly associated with patients' exposure to ciprofloxacin and meropenem or cefepime and meropenem, respectively. Overexpression of genes encoding antibiotic transporters in P. aeruginosa during treatment is frequent and is associated with increases in MICs above EUCAST clinical susceptibility breakpoints.


Assuntos
Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/genética , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Transporte Biológico , Expressão Gênica , Perfilação da Expressão Gênica , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação
2.
Int J Antimicrob Agents ; 36(6): 513-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926262

RESUMO

Pseudomonas aeruginosa causes severe nosocomial pneumonia in Intensive Care Unit (ICU) patients, with an increased prevalence of multiresistant strains. We examined the impact of the use of antipseudomonal antibiotic(s) on the susceptibility of P. aeruginosa isolated from ICU patients with clinically suspected hospital-acquired pneumonia collected in five teaching hospitals (110 non-duplicate initial isolates; 62 clonal pairs of initial and last isolates during treatment). Minimum inhibitory concentrations (MICs) were determined for amikacin, ciprofloxacin, meropenem, piperacillin/tazobactam (TZP), cefepime and ceftazidime (used in therapy) as well as five reporter antibiotics (aztreonam, colistin, gentamicin, piperacillin and ticarcillin) using Clinical and Laboratory Standards Institute (CLSI) methodology. Susceptibility was assessed according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI breakpoints. Resistance rates prior to treatment exceeded 25% for cefepime, ceftazidime, piperacillin, ticarcillin and aztreonam (EUCAST and CLSI) and for gentamicin, TZP and colistin (EUCAST only). The highest rates of cross-resistance were noted for ceftazidime and cefepime and the lowest rate for amikacin. Mean MIC values were systematically higher in isolates from patients previously exposed (1 month) to the corresponding antibiotic. For clonal pairs, a systematic increase in MIC between initial and last isolates (significant for amikacin, cefepime, meropenem and TZP) was noted. There was a significant correlation between the use of antibiotics (adjusted for respective proportional use of each drug) and loss of susceptibility at the population level when using EUCAST breakpoints. The high level of resistance of P. aeruginosa in ICU patients with nosocomial pneumonia as well as its further increase during treatment severely narrows the already limited therapeutic options. Further observational studies and the development of early diagnosis for resistant isolates are warranted.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana , Pneumonia Bacteriana/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção Hospitalar/microbiologia , Hospitais de Ensino , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA