Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 234: 123733, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801274

RESUMO

The exponential increase in the use and careless discard of synthetic plastics has created an alarming concern over the environmental health due to the detrimental effects of petroleum based synthetic polymeric compounds. Piling up of these plastic commodities on various ecological niches and entry of their fragmented parts into soil and water has clearly affected the quality of these ecosystems in the past few decades. Among the many constructive strategies developed to tackle this global issue, use of biopolymers like polyhydroxyalkanoates as sustainable alternatives for synthetic plastics has gained momentum. Despite their excellent material properties and significant biodegradability, polyhydroxyalkanoates still fails to compete with their synthetic counterparts majorly due to the high cost associated with their production and purification thereby limiting their commercialization. Usage of renewable feedstocks as substrates for polyhydroxyalkanoates production has been the thrust area of research to attain the sustainability tag. This review work attempts to provide insights about the recent developments in the production of polyhydroxyalkanoates using renewable feedstock along with various pretreatment methods used for substrate preparation for polyhydroxyalkanoates production. Further, the application of blends based on polyhydroxyalkanoates, and the challenges associated with the waste valorization based polyhydroxyalkanoates production strategy is elaborated in this review work.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Ecossistema , Biopolímeros/química , Plásticos
2.
Food Res Int ; 164: 112318, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737911

RESUMO

Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.


Assuntos
Dieta Vegana , Fungos , Animais , Humanos , Suplementos Nutricionais , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Aquecimento Global
3.
Chemosphere ; 313: 137613, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549508

RESUMO

Nanobubble water (NBW) could improve methane production from anaerobic digestion (AD) of corn straw without secondary contamination. In this study, the effect of carbon dioxide nanobubble water (CO2-NBW) volumes (0%, 25%, 50%, 75%, 100%) on methane production from corn straw was investigated. The results showed that addition of CO2-NBW could improve methane production and promote substrate degradation in AD process. The highest cumulative methane production of 132.16 mL g-1VSadded was obtained in the 100% CO2-NBW added reactor, which was 17% higher than that in the control group. Additionally, the addition of CO2-NBW could mitigate the sharp decrease in pH by acting as a buffer. CO2-NBW could also enhance microorganism activity throughout the AD process. The electron transport system (ETS) activity was increased by 23%, while the ß-glucosidase, dehydrogenase (DHA), and coenzyme F420 activities were increased by 15%, 23%, and 11%, respectively, at optimum addition of CO2-NBW. Meanwhile, addition of CO2-NBW accelerated the production and consumption of reducing sugar and volatile fatty acids (VFAs), promoting the reduction rates of TS (Total solid) and VS (Volatile solid).


Assuntos
Reatores Biológicos , Zea mays , Anaerobiose , Dióxido de Carbono , Água , Metano , Suplementos Nutricionais , Biocombustíveis
4.
Chemosphere ; 305: 135390, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35728665

RESUMO

Indiscriminate usage, disposal and recalcitrance of petroleum-based plastics have led to its accumulation leaving a negative impact on the environment. Bioplastics, particularly microbial bioplastics serve as an ecologically sustainable solution to nullify the negative impacts of plastics. Microbial production of biopolymers like Polyhydroxyalkanoates, Polyhydroxybutyrates and Polylactic acid using renewable feedstocks as well as industrial wastes have gained momentum in the recent years. The current study outlays types of bioplastics, their microbial sources and applications in various fields. Scientific evidence on bioplastics has suggested a unique range of applications such as industrial, agricultural and medical applications. Though diverse microorganisms such as Alcaligenes latus, Burkholderia sacchari, Micrococcus species, Lactobacillus pentosus, Bacillus sp., Pseudomonas sp., Klebsiella sp., Rhizobium sp., Enterobacter sp., Escherichia sp., Azototobacter sp., Protomonas sp., Cupriavidus sp., Halomonas sp., Saccharomyces sp., Kluyveromyces sp., and Ralstonia sp. are known to produce bioplastics, the industrial production of bioplastics is still challenging. Thus this paper also provides deep insights on the advancements made to maximise production of bioplastics using different approaches such as metabolic engineering, rDNA technologies and multitude of cultivation strategies. Finally, the constraints to microbial bioplastic production and the future directions of research are briefed. Hence the present review emphasizes on the importance of using bioplastics as a sustainable alternative to petroleum based plastic products to diminish environmental pollution.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Biodegradação Ambiental , Biopolímeros , Plásticos/metabolismo
5.
Chemosphere ; 303(Pt 1): 134956, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35588873

RESUMO

Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo
6.
Int J Food Microbiol ; 373: 109714, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35567891

RESUMO

One of the most significant and difficult jobs in food sustainability, is to make use of waste in the vegetable and fruit processing sectors. The discarded fruits along with their waste materials, is anticipated to have potential use for further industrial purposes via extraction of functional ingredients, extraction of bioactive components, fermentation. As a result of its abundant availability, simplicity and safe handling, and biodegradability, pineapple waste is now the subject of extensive research. It is regarded as a resource for economic development. This vast agro-industrial waste is being investigated as a low-cost raw material to produce a variety of high-value-added goods. Researchers have concentrated on the exploitation of pineapple waste, particularly for the extraction of prebiotic oligosaccharides as well as bromelain enzyme, and as a low-cost source of fibre, biogas, organic acids, phenolic antioxidants, and ethanol. Thus, this review emphasizes on pineapple waste valorisation approaches, extraction of bioactive and functional ingredients together with the advantages of pineapple waste to be used in many areas. From the socioeconomic perspective, pineapple waste can be a new raw material source to the industries and may potentially replace the current expensive and non-renewable sources. This review summarizes various approaches used for pineapple waste processing along with several important value-added products gained which could contribute towards healthy food and a sustainable environment.


Assuntos
Ananas , Antioxidantes , Biotecnologia , Frutas , Resíduos
7.
Chemosphere ; 297: 134181, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35248592

RESUMO

Catalytic pyrolysis has been widely explored for bio-oil production from lignocellulosic biomass owing to its high feasibility and large-scale production potential. The aim of this review was to summarize recent findings on bio-oil production through catalytic pyrolysis using lignocellulosic biomass as feedstock. Lignocellulosic biomass, structural components and fundamentals of biomass catalytic pyrolysis were explored and summarized. The current status of bio-oil yield and quality from catalytic fast pyrolysis was reviewed and presented in the current review. The potential effects of pyrolysis process parameters, including catalysts, pyrolysis conditions, reactor types and reaction modes on bio-oil production are also presented. Techno-economic analysis of full-scale commercialization of bio-oil production through the catalytic pyrolysis pathway was reviewed. Further, limitations associated with current practices and future prospects of catalytic pyrolysis for production of high-quality bio-oils were summarized. This review summarizes the process of bio-oil production from catalytic pyrolysis and provides a general scientific reference for further studies.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Catálise , Temperatura Alta , Lignina , Óleos de Plantas , Polifenóis
8.
Chemosphere ; 283: 131234, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153916

RESUMO

The potential application of silage fermentation on abandoned fresh tea leaves (AFTL) was investigated. Dynamic profiles of fermentation-related components, characteristic components and the bacterial community of AFTL during ensiling were analysed. The results showed that after ensiling for 60 days, the concentrations of lactic, acetic and propionic acid increased, whereas a high pH value (4.80) and NH3-N content (106 g/kg TN) were detected. Characteristic components, including caffeine, polyphenols, theanine and catechins, were well preserved. The microbial community changed significantly, and Lactobacillus (63.6%) became the dominant phylum. Spearman rank correlation revealed a positive correlation between lactic acid concentration and the abundance of Lactobacillus (63.6%) and Klebsiella (25.0%), whereas the abundance of Klebsiella was negatively correlated with catechin concentration. In conclusion, ensiling could be an effective utilization for AFTL and provides a new idea for utilizing idle resources on tea plantations.


Assuntos
Bactérias , Silagem , Bactérias/genética , Fermentação , Folhas de Planta , Silagem/análise , Chá
9.
J Hazard Mater ; 414: 125577, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33689996

RESUMO

In this study, two pyridine-degrading strains namely Enterobacter cloacae complex sp. BD17 and Enterobacter sp.BD19 were isolated from the aerobic tank of a pesticide wastewater treatment plant. The mixed bacteria H4 composed of BD17 and BD19 at a ratio of 1:1 was immobilized by Solidago canadensis L. stem biochar with a dosage of 2 g·L-1. The highest pyridine removal rate of 91.70% was achieved by the immobilized H4 at an initial pyridine concentration of 200 mg·L-1, pH of 7.0, temperature of 28 °C and salinity of 3.0% within 36 h. The main intermediates of pyridine degradation by BD17 were pyridine-2-carboxamide, 2-aminopropanediamide, and 2-aminoacetamide, while 2-picolinic acid, isopropyl acetate, isopropyl alcohol, and acetaldehyde were identified with BD19 by adopting GC-MS technique. Interestingly, there was a possibility of totally mineralization of pyridine and the corresponding degradation pathways of BD17 and BD19 were revealed for the first time.


Assuntos
Solidago , Biodegradação Ambiental , Carvão Vegetal , Enterobacter , Piridinas
10.
Chemosphere ; 275: 130093, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33652274

RESUMO

The objective of this present study was to understand the distribution patterns of various forms of soil phosphorus (P) and the biotic and abiotic factors affecting the soil P fractions under long-term cover crops. Here, we investigated the characteristics of soil P forms, community structure of P-solubilizing bacteria (using 16S rRNA) and the related enzyme activity under clean tillage (CT), 14 years of white clover (WC, Trifolium repens L.) and orchard grass (OG, Dactylis glomerata L.) cover crops in a rain-fed apple orchard on the Weibei Loess Plateau, China. Relative to CT treatment, long-term cover crops enhanced the bioavailability of soil P by increasing the contents of total phosphorus (TP), microbial phosphorus (MBP), organic phosphorus (Po) and certain forms of inorganic phosphorus (e.g. Al-P, Ca2-P, Ca8-P and Fe-P) in the surface soil, in addition, WC treatment also increase the available P (AP) contents in the topsoil. A redundant analysis (RDA) showed that soil organic matter (SOM), NH4+-N and pH were the key environmental factors affecting the morphological changes of soil P. In addition, the effects of long-term cover crops on soil P forms were mainly concentrated in the topsoil, and the WC treatment had a greater impact on soil P composition than the OG treatment. Interestingly, long-term cover crops effectively increased the abundances of P-solubilizing bacteria, such as Streptomyces, Sphingomonas, Nocardioides and Haliangium, and enhanced the alkaline phosphatase (ALP) activity. Overall, long-term cover crops were an effective strategy to activate soil P as they improve the soil environment.


Assuntos
Malus , Solo , China , Fósforo , RNA Ribossômico 16S , Chuva , Microbiologia do Solo
11.
J Hazard Mater ; 406: 124593, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316669

RESUMO

In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1-T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88-14.32%), Actinobacteria (35.20-4.99%), Bacteroidetes (0.05-15.07%) and Proteobacteria (0.01-20.28%) with elevated biochar concentration (0%-10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality.


Assuntos
Compostagem , Metais Pesados , Animais , Bactérias/genética , Carvão Vegetal , Esterco , Aves Domésticas , Solo , Zinco
12.
J Hazard Mater ; 389: 122116, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972527

RESUMO

This study evaluated the effect of integrated bacterial culture and biochar on heavy metal (HM) stabilization and microbial activity during pig manure composting. High-throughput sequencing was carried out on six treatments, namely T1-T6, where T2 was single application of bacteria culture (C), T3 and T5 were supplemented with 12 % wood (WB) and wheat-straw biochar (WSB), respectively, and T4 and T6 had a combination of bacterial consortium mixed with biochar (12 % WB and 12 % WSB, respectively). T1 was used as control for the comparison. The results show that the populations of bacterial phyla were significantly greater in T6 and T4. The predominate phylum were Proteobacteria (56.22 %), Bacteroidetes (35.40 %), and Firmicutes (8.38 %), and the dominant genera were Marinimicrobium (53.14 %), Moheibacter (35.22 %), and Erysipelothrix (5.02 %). Additionally, the correlation analysis revealed the significance of T6, as the interaction of biochar and bacterial culture influenced the HM adsorption efficiency and microbial dynamics during composting. Overall, the integrated bacterial culture and biochar application promoted the immobilization of HMs (Cu and Zn) owing to improved adsorption, and enhanced the abundance and selectivity of the bacterial community to promote degradation and improving the safety and quality of the final compost product.


Assuntos
Bactérias/metabolismo , Carvão Vegetal/química , Compostagem/métodos , Cobre/metabolismo , Esterco/microbiologia , Zinco/metabolismo , Animais , Cobre/análise , Cobre/isolamento & purificação , Concentração de Íons de Hidrogênio , Microbiota/fisiologia , Suínos , Temperatura , Zinco/análise , Zinco/isolamento & purificação
13.
Sci Total Environ ; 642: 526-536, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908511

RESUMO

Metal oxide-Carbon composites have been developed tailoring towards specific functionalities for removing pollutants from contaminated environmental systems. In this study, we synthesized a novel CaO-MgO hybrid carbon composite for removal of phosphate and humate by co-pyrolysis of dolomite and sawdust at various temperatures. Increasing of pyrolysis temperature to 900 °C generated a composite rich in carbon, CaO and MgO particles. Phosphate and humate can be removed efficiently by the synthesized composite with the initial solution in the range of pH 3.0-11.0. The phosphate adsorption was best fitted by pseudo-second-order kinetic model, while the humate adsorption followed the pseudo-second-order and the intra-particle diffusion kinetic models. The maximum adsorption capabilities quantified by the Langmuir isotherm model were up to 207 mg phosphorus (or 621 mg phosphate) and 469 mg humate per one-gram composite used, respectively. Characterization of composites after adsorption revealed the contributions of phosphate crystal deposition and electrostatic attraction on the phosphate uptake and involvement of π - π interaction in the humate adsorption. The prepared composite has great potential for recovering phosphorus from wastewater, and the phosphate sorbed composite can be employed as a promising phosphorus slow-releasing fertilizer for improving plant growth.


Assuntos
Fosfatos/análise , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , Carbono , Cinética , Fosfatos/química , Fósforo/análise , Reciclagem , Poluentes Químicos da Água/química
14.
Bioresour Technol ; 216: 172-81, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27240232

RESUMO

This study aimed to evaluate the role of different amount of zeolite with low dosage of lime amendment on the greenhouse gas (GHGs) emission and maturity during the dewatered fresh sewage sludge (DFSS) composting. The evolution of CO2, CH4, NH3 and N2O and maturity indexes were monitored in five composting mixtures prepared from DFSS mixed with wheat straw, while 10%, 15% and 30% zeolite+1% lime were supplemented (dry weight basis of DFSS) into the composting mass and compared with treatment only 1% lime amended and control without any amendment. The results showed that addition of higher dosage of zeolite+1% lime drastically reduce the GHGs emissions and NH3 loss. Comparison of GHGs emissions and compost quality showed that zeolite amended treatments were superior than control and 1% lime amended treatments. Therefore, DFSS composting with 30% zeolite+1% lime as consortium of additives were found to emit very less amount of GHGs and gave the highest maturity than other treatments.


Assuntos
Compostos de Cálcio/química , Gases/análise , Óxidos/química , Esgotos , Solo , Zeolitas/química , Amônia/análise , Dióxido de Carbono/análise , Efeito Estufa , Concentração de Íons de Hidrogênio , Metano/análise , Óxido Nitroso/análise , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA