Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 91: 153711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34450377

RESUMO

BACKGROUND: Gemcitabine (GCB) is a first-line chemotherapeutic drug for pancreatic cancer (PCa). However, the resistance begins developing within weeks of chemotherapy. SPINK1 overexpression enhances resistance to chemotherapy. In a recent study, our laboratory established that the oleanolic acid (OA) derivative, K73-03, had a strong inhibitory effect on a SPINK1 overexpressed PCa cells. PURPOSE: In our current study, we studied the enhancement of GCB inhibitory effect by K73-03, a new novel OA derivative, alone or in combination with GCB on the GCB-resistant PCa cells by mitochondrial damage through regulation of the miR-421/SPINK1. METHODS: We detected the binding between miR-421 and SPINK1-3'-UTR in GCB-resistant PCa cells using Luciferase reporter assays. Cells viability, apoptosis, migration, and mitochondrial damage were investigated. RESULTS: The results demonstrated that the combination of K73-03 and GCB suppressed the growth of AsPC-1 and MIA PaCa-2 cells synergistically, with or without GCB resistance. Mechanistic findings showed that a combination of K73-03 and GCB silences SPINK1 epigenetically by miR-421 up-regulating, which leads to mitochondrial damage and inducing apoptosis in GCB-resistant PCa cells. CONCLUSION: We found an interesting finding that the 73-03 in combination with GCB can improve GCB efficacy and decrease PCa resistance, which induced apoptosis and mitochondrial damage through epigenetic inhibition of SPINK1 transcription by miR-421 up-regulation. This was the first study that used OA derivatives on GCB-resistant PCa cells, so this combined strategy warrants further investigation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , MicroRNAs , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas , Inibidor da Tripsina Pancreática de Kazal , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/genética , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA