Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178383

RESUMO

Marburg virus (MV) is a highly etiological agent of haemorrhagic fever in humans and has spread across the world. Its outbreaks caused a 23-90% human death rate. However, there are currently no authorized preventive or curative measures yet. VP40 is the MV matrix protein, which builds protein shell underneath the viral envelope and confers hallmark filamentous. VP40 alone is able to induce assembly and budding of filamentous virus-like particles (VLPs), which resemble authentic virions. As a result, this research is credited with clarifying the function of VP40 and leading to the discovery of new therapeutic targets effective in combating MV disease (MVD). Virtual screening, molecular docking and molecular dynamics (MD) simulation were used to find the putative active chemicals based on a 3D pharmacophore model of the protein's active site cavity. Initially, andrographidine-C, a potent inhibitor was selected for the development of the pharmacophore model. Later, a library of 30,000 compounds along with the andrographidine-C was docked against VP40 protein. Three best hits including avanafil, diuvaretin and macrourone were subjected to further MD simulation analysis, as these compounds had better binding affinities as compared to andrographidine-C. Furthermore, throughout the 100 ns simulations, the back bone of VP40 protein in presence of avanafil, diuvaretin and macrourone remained stable which was further validated by MM-PBSA analysis. Additionally, all of these compounds depict maximum drug-like properties. The predicted drugs based on the ligand, avanafil, diuvaretin and macrourone could be exploited and developed as an alternative or complementary therapy for the treatment of MVD.Communicated by Ramaswamy H. Sarma.

2.
BMC Plant Biol ; 23(1): 576, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978421

RESUMO

BACKGROUND: Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS: HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION: The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).


Assuntos
Antioxidantes , Eucalyptus , Antioxidantes/análise , Peróxido de Hidrogênio , Ácido Ascórbico , Extratos Vegetais/análise , Frutas/microbiologia
3.
Sci Rep ; 13(1): 14845, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684294

RESUMO

The development of an efficient, safe, and environment-friendly technique to terminate tuber dormancy in potatoes (Solanum tuberosum L.) is of great concern due to the immense scope of multiple cropping all over the globe. The breakage of tuber dormancy has been associated with numerous physiological changes, including a decline in the level of starch and an increase in the levels of sugars during storage of freshly harvested seed potatoes, although their consistency across genotypes and various dormancy-breaking techniques have not yet been fully elucidated. The purpose of the present research is to assess the efficacy of four different dormancy-breaking techniques, such as soaking in 90, 60, or 30 mg L-1 solutions of benzyl amino purine (BAP) and 30, 20, or 10 mg L-1 gibberellic acid (GA3) alone and in the combination of optimized concentrations; cold pre-treatment at 6, 4, or 2 °C; electric shock at 80, 60, 40, or 20 Vs; and irradiation at 3.5, 3, 2.5, 2, 1.5, or 1 kGy on the tuber dormancy period and sprout length of six genotypes. Furthermore, the changes that occurred in tuber weight and endogenous starch, sucrose, fructose, and glucose contents in experimental genotypes following the application of these techniques were also examined. Overall, the most effective technique to terminate tuber dormancy and hasten spout growth was the combined application of BAP and GA3, which reduced the length of dormancy by 9.6 days compared to the untreated control, following 6.7 days of electric current, 4.4 days of cold pre-treatment, and finally irradiation (3.3 days). The 60 mg L-1 solution of BAP greatly reduced the dormancy period in all genotypes but did not affect the sprout length at all. The genotypes showed a weak negative correlation (r = - 0.4) (P < 0.05) of endogenous starch contents with dormancy breakage and weight loss or a moderate (r = - 0.5) correlation with sprout length, but a strong positive correlation (r = 0.8) of tuber glucose, fructose, and sucrose contents with dormancy breakage and weight loss. During 3 weeks of storage, sprouting commencement and significant weight loss occurred as tuber dormancy advanced towards breakage due to a reduction in starch and an increase in the sucrose, fructose, and glucose contents of the tubers. These findings could be advantageous for postponing or accelerating seed potato storage as well as investigating related physiological research in the future.


Assuntos
Solanum tuberosum , Açúcares , Solanum tuberosum/genética , Glucose , Morte , Frutose , Genótipo , Amido , Sacarose
4.
Sci Rep ; 10(1): 20017, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208758

RESUMO

Polyphenols based bioactive compounds from vegetables and fruits are known for impressive antioxidant activity. Ingestion of these antioxidants may promote human health against cardiovascular diseases and cancer. Mango is a popular tropical fruit with special taste, high nutritional value and health-enhancing metabolites. The aim was to investigate the diversity of phytochemicals between two mango cultivars of china at three stages of fruit maturity. We used ESI-QTRAP-MS/MS approach to characterize comprehensively the metabolome of two mango cultivars named Hongguifei (HGF) and Tainong (TN). HPLC was used to quantify selected catechin based phenolic compounds. Moreover, real-time qPCR was used to study the expression profiles of two key genes (ANR and LAR) involved in proanthocyanidin biosynthesis from catechins and derivatives. A total of 651 metabolites were identified, which include at least 257 phenolic compounds. Higher number of metabolites were differentially modulated in peel as compared to pulp. Overall, the relative quantities of amino acids, carbohydrates, organic acids, and other metabolites were increased in the pulp of TN cultivar. While the contents of phenolic compounds were relatively higher in HGF cultivar. Moreover, HPLC based quantification of catechin and derivatives exhibited cultivar specific variations. The ANR and LAR genes exhibited an opposite expression profile in both cultivars. Current study is the first report of numerous metabolites including catechin-based derivatives in mango fruit. These findings open novel possibilities for the use of mango as a source of bioactive compounds.


Assuntos
Frutas/metabolismo , Mangifera/metabolismo , Metaboloma , Compostos Fitoquímicos/análise , Extratos Vegetais/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , China , Frutas/química , Mangifera/química , Mangifera/classificação , Valor Nutritivo , Extratos Vegetais/análise , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA