Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 37(10): e23201, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732618

RESUMO

Depletion of gut microbiota is associated with inefficient energy extraction and reduced production of short-chain fatty acids from dietary fibers, which regulates colonic proglucagon (Gcg) expression and small intestinal transit in mice. However, the mechanism by which the gut microbiota influences dietary protein metabolism and its corresponding effect on the host physiology is poorly understood. Enteropeptidase inhibitors block host protein digestion and reduce body weight gain in diet-induced obese rats and mice, and therefore they constitute a new class of drugs for targeting metabolic diseases. Enteroendocrine cells (EECs) are dispersed throughout the gut and possess the ability to sense dietary proteins and protein-derived metabolites. Despite this, it remains unclear if enteropeptidase inhibition affects EECs function. In this study, we fed conventional and antibiotic treated mice a western style diet (WSD) supplemented with an enteropeptidase inhibitor (WSD-ETPi), analyzed the expression of gut hormones along the length of the intestine, and measured small intestinal transit under different conditions. The ETPi-supplemented diet promoted higher Gcg expression in the colon and increased circulating Glucagon like peptide-1 (GLP-1) levels, but only in the microbiota-depleted mice. The increase in GLP-1 levels resulted in slower small intestinal transit, which was subsequently reversed by administration of GLP-1 receptor antagonist. Interestingly, small intestinal transit was normalized when an amino acid-derived microbial metabolite, p-cresol, was supplemented along with WSD-ETPi diet, primarily attributed to the reduction of colonic Gcg expression. Collectively, our data suggest that microbial dietary protein metabolism plays an important role in host physiology by regulating GLP-1-mediated intestinal transit.


Assuntos
Enteropeptidase , Peptídeo 1 Semelhante ao Glucagon , Camundongos , Ratos , Animais , Proteínas Alimentares , Suplementos Nutricionais , Aminoácidos
2.
Gut ; 72(2): 314-324, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35697422

RESUMO

OBJECTIVE: Dietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet. DESIGN: To assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose. In addition, we used germ-free mice and in vitro cultures to evaluate the activity of bacteria to transform bile acids in the caecal content of mice fed with western-style diet enriched with oligofructose. Finally, we treated wild-type and TGR5 knockout mice orally with hyodeoxycholic acid to assess its antidiabetic effects. RESULTS: We show that oligofructose sustains the production of 6α-hydroxylated bile acids from primary bile acids by gut bacteria when fed western-style diet. Mechanistically, we demonstrated that the effects of oligofructose on 6α-hydroxylated bile acids were microbiota dependent and specifically required functional TGR5 signalling to reduce body weight gain and improve glucose metabolism. Furthermore, we show that the 6α-hydroxylated bile acid hyodeoxycholic acid stimulates TGR5 signalling, in vitro and in vivo, and increases GLP-1R activity to improve host glucose metabolism. CONCLUSION: Modulation of the gut microbiota with oligofructose enriches bacteria involved in 6α-hydroxylated bile acid production and leads to TGR5-GLP1R axis activation to improve body weight and metabolism under western-style diet feeding in mice.


Assuntos
Ácidos e Sais Biliares , Dieta Ocidental , Fibras na Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Glucose , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Peso Corporal , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fibras na Dieta/administração & dosagem
3.
Cell Rep ; 35(8): 109163, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038733

RESUMO

Mice lacking a microbiota are protected from diet-induced obesity. Previous studies have shown that feeding a Western diet causes hypothalamic inflammation, which in turn can lead to leptin resistance and weight gain. Here, we show that wild-type (WT) mice with depleted gut microbiota, i.e., germ-free (GF) and antibiotic-treated mice, have elevated levels of glucagon-like peptide-1 (GLP-1), are protected against diet-induced hypothalamic inflammation, and have enhanced leptin sensitivity when fed a Western diet. Using GLP-1 receptor (GLP-1R)-deficient mice and pharmacological inhibition of the GLP-1R in WT mice, we demonstrate that intact GLP-1R signaling is required for preventing hypothalamic inflammation and enhancing leptin sensitivity. Furthermore, we show that astrocytes express the GLP-1R, and deletion of the receptor in glial fibrillary acidic protein (GFAP)-expressing cells diminished the antibiotic-induced protection against diet-induced hypothalamic inflammation. Collectively, our results suggest that depletion of the gut microbiota attenuates diet-induced hypothalamic inflammation and enhances leptin sensitivity via GLP-1R-dependent mechanisms.


Assuntos
Dieta Ocidental/efeitos adversos , Microbioma Gastrointestinal/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Leptina/metabolismo , Obesidade/fisiopatologia , Animais , Humanos , Masculino , Camundongos
4.
Cell Metab ; 33(7): 1483-1492.e10, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887197

RESUMO

Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.


Assuntos
Ácidos e Sais Biliares/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Peso Corporal/genética , Metabolismo Energético/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/genética , Obesidade/prevenção & controle , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia
5.
Arterioscler Thromb Vasc Biol ; 38(10): 2318-2326, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903735

RESUMO

Objective- To investigate the effect of gut microbiota and diet on atherogenesis. Approach and Results- Here, we investigated the interaction between the gut microbiota and diet on atherosclerosis by feeding germ-free or conventionally raised Apoe-/- mice chow or Western diet alone or supplemented with choline (which is metabolized by the gut microbiota and host enzymes to trimethylamine N-oxide) for 12 weeks. We observed smaller aortic lesions and lower plasma cholesterol levels in conventionally raised mice compared with germ-free mice on a chow diet; these differences were not observed in mice on a Western diet. Choline supplementation increased plasma trimethylamine N-oxide levels in conventionally raised mice but not in germ-free mice. However, this treatment did not affect the size of aortic lesions or plasma cholesterol levels. Gut microbiota composition was analyzed by sequencing of 16S rRNA genes. As expected, the global community structure and relative abundance of many taxa differed between mice fed chow or a Western diet. Choline supplementation had minor effects on the community structure although the relative abundance of some taxa belonging to Clostridiales was altered. Conclusions- In conclusion, the impact of the gut microbiota on atherosclerosis is dietary dependent and is associated with plasma cholesterol levels. Furthermore, the microbiota was required for trimethylamine N-oxide production from dietary choline, but this process could not be linked to increased atherosclerosis in this model.


Assuntos
Doenças da Aorta/microbiologia , Aterosclerose/microbiologia , Bactérias/metabolismo , Colina/administração & dosagem , Dieta Ocidental , Suplementos Nutricionais , Microbioma Gastrointestinal , Intestinos/microbiologia , Camundongos Knockout para ApoE , Ração Animal , Animais , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/prevenção & controle , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/prevenção & controle , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Colesterol/sangue , Colina/metabolismo , Modelos Animais de Doenças , Masculino , Metilaminas/metabolismo , Camundongos Endogâmicos C57BL , Ribotipagem
6.
Cell Host Microbe ; 23(1): 27-40.e7, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29276171

RESUMO

Diet strongly affects gut microbiota composition, and gut bacteria can influence the colonic mucus layer, a physical barrier that separates trillions of gut bacteria from the host. However, the interplay between a Western style diet (WSD), gut microbiota composition, and the intestinal mucus layer is less clear. Here we show that mice fed a WSD have an altered colonic microbiota composition that causes increased penetrability and a reduced growth rate of the inner mucus layer. Both barrier defects can be prevented by transplanting microbiota from chow-fed mice. In addition, we found that administration of Bifidobacterium longum was sufficient to restore mucus growth, whereas administration of the fiber inulin prevented increased mucus penetrability in WSD-fed mice. We hypothesize that the presence of distinct bacteria is crucial for proper mucus function. If confirmed in humans, these findings may help to better understand diseases with an affected mucus layer, such as ulcerative colitis.


Assuntos
Bifidobacterium longum/metabolismo , Colo/microbiologia , Dieta Ocidental/efeitos adversos , Fibras na Dieta/uso terapêutico , Transplante de Microbiota Fecal , Mucosa Intestinal/microbiologia , Animais , Colo/patologia , Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/patologia , Inulina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia
7.
Am J Physiol Endocrinol Metab ; 314(4): E334-E352, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874357

RESUMO

Increasing evidence suggests that polyphenols have a significant potential in the prevention and treatment of risk factors associated with metabolic syndrome. The objective of this study was to assess the metabolic outcomes of two polyphenol-containing extracts from cinnamon bark (CBE) and grape pomace (GPE) on C57BL/6J mice fed a high-fat diet (HFD) for 8 wk. Both CBE and GPE were able to decrease fat mass gain and adipose tissue inflammation in mice fed a HFD without reducing food intake. This was associated with reduced liver steatosis and lower plasma nonesterified fatty acid levels. We also observed a beneficial effect on glucose homeostasis, as evidenced by an improved glucose tolerance and a lower insulin resistance index. These ameliorations of the overall metabolic profile were associated with a significant impact on the microbial composition, which was more profound for the GPE than for the CBE. At the genus level, Peptococcus were decreased in the CBE group. In the GPE-treated group, several key genera that have been previously found to be linked with HFD, metabolic effects, and gut barrier integrity were affected: we observed a decrease of Desulfovibrio, Lactococcus, whereas Allobaculum and Roseburia were increased. In addition, the expression of several antimicrobial peptides and tight junction proteins was increased in response to both CBE and GPE supplementation, indicating an improvement of the gut barrier function. Collectively, these data suggest that CBE and GPE can ameliorate the overall metabolic profile of mice on a high-fat diet, partly by acting on the gut microbiota.


Assuntos
Cinnamomum zeylanicum/química , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle , Extratos Vegetais/farmacologia , Vitis/química , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Experimental/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Fígado Gorduroso/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/prevenção & controle , Permeabilidade , Extratos Vegetais/uso terapêutico
8.
Diabetes Obes Metab ; 19(4): 579-589, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28009106

RESUMO

AIMS: To investigate the metabolic effects of 12-week oral supplementation with Lactobacillus reuteri DSM 17938 in patients with type 2 diabetes on insulin therapy. MATERIALS AND METHODS: In a double-blind trial, we randomized 46 people with type 2 diabetes to placebo or a low (108 CFU/d) or high dose (1010 CFU/d) of L. reuteri DSM 17938 for 12 weeks. The primary endpoint was the effect of supplementation on glycated haemoglobin (HbA1c). Secondary endpoints were insulin sensitivity (assessed by glucose clamp), liver fat content, body composition, body fat distribution, faecal microbiota composition and serum bile acids. RESULTS: Supplementation with L. reuteri DSM 17938 for 12 weeks did not affect HbA1c, liver steatosis, adiposity or microbiota composition. Participants who received the highest dose of L. reuteri exhibited increases in insulin sensitivity index (ISI) and serum levels of the secondary bile acid deoxycholic acid (DCA) compared with baseline, but these differences were not significant in the between-group analyses. Post hoc analysis showed that participants who responded with increased ISI after L. reuteri supplementation had higher microbial diversity at baseline, and increased serum levels of DCA after supplementation. In addition, increases in DCA levels correlated with improvement in insulin sensitivity in the probiotic recipients. CONCLUSIONS: Intake of L. reuteri DSM 17938 for 12 weeks did not affect HbA1c in people with type 2 diabetes on insulin therapy; however, L. reuteri improved insulin sensitivity in a subset of participants and we propose that high diversity of the gut microbiota at baseline may be important.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Suplementos Nutricionais/microbiologia , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Limosilactobacillus reuteri/metabolismo , Probióticos/administração & dosagem , Idoso , Glicemia/análise , Ácido Desoxicólico/sangue , Diabetes Mellitus Tipo 2/microbiologia , Método Duplo-Cego , Fezes/microbiologia , Feminino , Técnica Clamp de Glucose , Hemoglobinas Glicadas/análise , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade
9.
Endocrinology ; 154(10): 3643-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892476

RESUMO

The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Regulação para Baixo , Intestinos/microbiologia , Leptina/metabolismo , Neurônios/metabolismo , Proglucagon/metabolismo , Adiposidade , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Tronco Encefálico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Vida Livre de Germes , Hipotálamo/metabolismo , Injeções Intraperitoneais , Leptina/administração & dosagem , Leptina/sangue , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proglucagon/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA