Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 106(1): 215-222, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34515508

RESUMO

Cranberry fruit rot (CFR) pathogens are widely reported in the literature, but performing large-scale analysis of their presence inside fruit has always been challenging. In this study, a new molecular diagnostic tool, capable of identifying simultaneously 12 potential fungal species causing CFR, was used to better define the impact of CFR across cranberry fields in Québec. For this purpose, 126 fields and 7,825 fruits were sampled in three cranberry farms distributed throughout the province and subjected to comparative analyses of fungal presence and abundance according to cultural practices, sampling times, and cranberry cultivars. All 12 pathogens were detected throughout the study, but as a first major finding, the analyses revealed that four species, Godronia cassandrae, Colletotrichum fructivorum, Allantophomopsis cytisporea, and Coleophoma empetri, were consistently predominant regardless of the parameters studied. Comparison of conventional and organic productions showed a significant reduction in fungal richness and relative abundance. Interestingly, Monilinia oxycocci was found almost exclusively in organic productions, indicating that fungicides had a strong and persistent effect on its population. Surprisingly, there were no significant differences in fungal relative abundance or species richness between fruit sampled at harvest or in storage, suggesting that there may not exist a clear distinction between field and storage rot, as was previously thought. Comparative analysis of fungal species found on eight different cranberry cultivars indicated that they were all infected by the same fungi but could not rule out differences in genetic resistance. This large-scale analysis allows us to draw an exhaustive picture of CFR in Québec and provides new information with respect to its management.


Assuntos
Vaccinium macrocarpon , Fazendas , Frutas , Extratos Vegetais , Quebeque
2.
Plant Soil ; 466(1-2): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720209

RESUMO

BACKGROUND: Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE: Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS: Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-021-05061-1.

3.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32584998

RESUMO

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Assuntos
Aquaporinas , Vitis , Aquaporinas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Vitis/genética , Vitis/metabolismo
4.
J Plant Physiol ; 200: 82-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27344403

RESUMO

Silicon (Si) is a beneficial element to plants, and its absorption via transporters leads to protective effects against biotic and abiotic stresses. In higher plants, two groups of root transporters for Si have been identified: influx transporters (Lsi1) and efflux transporters (Lsi2). Lsi1 transporters belong to the NIPIII aquaporins, and functional Lsi1s have been found in many plants species. Much less is known about Lsi2s that have been characterized in only a few species. Horsetail (Equisetum arvense), known among the highest Si accumulators in the plant kingdom, is a valuable model to study Si absorption and deposition. In this study, we first analyzed discrete Si deposition patterns in horsetail shoots, where ubiquitous silicification differs markedly from that of higher plants. Then, using the sequenced horsetail root transcriptome, two putative Si efflux transporter genes, EaLsi2-1 and EaLsi2-2, were identified. These genes share low sequence similarity with their homologues in higher plants. Further characterisation of EaLsi2-1 in transient expression assay using Nicotiana benthamiana epidermal cells confirmed transmembrane localization. In order to determine their functionality, the EaLsi2-1 was expressed in Xenopus oocytes, confirming that the translated protein was efficient for Si efflux. Both genes were equally expressed in roots and shoots, but interestingly, showed a much higher expression in the shoots than in the roots in contrast to Lsi2s found in other plants, a result consistent with the specific anatomy of horsetail and its rank as one of the highest Si accumulators among plant species.


Assuntos
Equisetum/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Silício/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Clonagem Molecular , DNA Complementar/genética , Equisetum/genética , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Alinhamento de Sequência , Xenopus
5.
J Nat Prod ; 66(9): 1280-3, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14510618

RESUMO

Extraction of cucumber leaf tissue expressing induced resistance against powdery mildew fungi revealed the presence of two new major C-glycosyl flavonoid products: vitexin-6-(4-hydroxy-1-ethylbenzene) (cucumerin A, 1) and isovitexin-8-(4-hydroxy-1-ethylbenzene) (cucumerin B, 2). In addition, the known C-glycosyl flavonoids apigenin-8-C-beta-D-glucopyranoside (vitexin, 3), apigenin-6-C-beta-D-glucopyranoside (isovitexin, 4), luteolin-8-C-beta-D-glucopyranoside (orientin, 5), and luteolin-6-C-beta-D-glucopyranoside (isoorientin, 6), as well as 4-hydroxycinnamic acid (p-coumaric acid, 7) and its methyl ester (p-came, 8), were found in higher quantities within resistant plants. The structures of 1-8 were elucidated using spectroscopic methods and unambiguously confirmed for 3-8 using co-chromatography experiments with authentic standards. On the basis of the results of this study and the reported biological activities of C-glycosyl flavonoids, these compounds would play a vital role in the defense strategy of this species by acting as phytoalexins.


Assuntos
Cucumis sativus/química , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química , Flavonoides/química , Flavonoides/farmacologia , Fungos/efeitos dos fármacos , Glicosídeos/química , Glicosídeos/farmacologia , Manitoba , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sesquiterpenos , Estereoisomerismo , Terpenos , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA