Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 22(24): 19326-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26122566

RESUMO

To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 µg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.


Assuntos
Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/farmacologia , Urânio/farmacologia , Cádmio/análise , Cádmio/farmacologia , Cobalto/análise , Cobalto/farmacologia , Cobre/análise , Cobre/farmacologia , Alemanha , Mineração , Filogenia , Solo/química , Poluentes do Solo/análise , Bactérias Redutoras de Enxofre/efeitos dos fármacos , Urânio/análise , Zinco/análise , Zinco/farmacologia
2.
Appl Environ Microbiol ; 80(16): 5086-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928873

RESUMO

Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Compostos de Manganês/metabolismo , Microbiologia do Solo , Urânio/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Mineração , Dados de Sequência Molecular , Oxirredução , Filogenia , Solo/química
3.
Appl Environ Microbiol ; 76(10): 3143-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20363796

RESUMO

Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.


Assuntos
Metais Pesados/análise , Microbiologia do Solo , Solo/análise , Sulfatos/metabolismo , Urânio/análise , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Alemanha , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Filogenia , Poluentes do Solo/análise , Poluentes Radioativos do Solo/análise
4.
J Basic Microbiol ; 47(6): 474-84, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18072248

RESUMO

The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells.


Assuntos
Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Metais Terras Raras/análise , Metais/farmacologia , Cloreto de Sódio/farmacologia , Microbiologia do Solo , Poluentes do Solo , Urânio , Poluentes Químicos da Água/análise , Ácidos , Biomassa , Alemanha , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Metais Terras Raras/metabolismo , Testes de Sensibilidade Microbiana , Mineração , Fatores de Tempo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA