Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21931, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081984

RESUMO

Brown seaweeds have a rich bioactive content known to modulate biological processes, including the mucosal immune response and microbiota function, and may therefore have the potential to control enteric pathogens. Here, we tested if dietary seaweed (Saccharina latissima) supplementation could modulate pig gut health with a specific focus on parasitic helminth burdens, gut microbiota composition, and host immune response during a five week feeding period in pigs co-infected with the helminths Ascaris suum and Oesophagostomum dentatum. We found that inclusion of fermented S. latissima (Fer-SL) at 8% of the diet increased gut microbiota α-diversity with higher relative abundances of Firmicutes, Tenericutes, Verrucomicrobia, Spirochaetes and Elusimicrobia, and lower abundance of Prevotella copri. In the absence of helminth infection, transcription of immune-related genes in the intestine was only moderately influenced by dietary seaweed. However, Fer-SL modulated the transcriptional response to infection in a site-specific manner in the gut, with an attenuation of infection-induced gene expression in the jejunum and an amplification of gene expression in the colon. Effects on systemic immune parameters (e.g. blood lymphocyte populations) were limited, indicating the effects of Fer-SL were mainly localized to the intestinal tissues. Despite previously documented in vitro anti-parasitic activity against pig helminths, Fer-SL inclusion did not significantly affect parasite egg excretion or worm establishment. Collectively, our results show that although Fer-SL inclusion did not reduce parasite burdens, it may modify the gut environment during enteric parasite infection, which encourages continued investigations into the use of seaweeds or related products as novel tools to improve gut health.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Dieta , Oesophagostomum , Suplementos Nutricionais , Imunidade
2.
FASEB J ; 36(4): e22256, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333423

RESUMO

Proanthocyanidins (PAC) are dietary polyphenols with putative anti-inflammatory and immunomodulatory effects. However, whether dietary PAC can regulate type-2 immune function and inflammation at mucosal surfaces remains unclear. Here, we investigated if diets supplemented with purified PAC modulated pulmonary and intestinal mucosal immune responses during infection with the helminth parasite Ascaris suum in pigs. A. suum infection induced a type-2 biased immune response in lung and intestinal tissues, characterized by pulmonary granulocytosis, increased Th2/Th1 T cell ratios in tracheal-bronchial lymph nodes, intestinal eosinophilia, and modulation of genes involved in mucosal barrier function and immunity. Whilst PAC had only minor effects on pulmonary immune responses, RNA-sequencing of intestinal tissues revealed that dietary PAC significantly enhanced transcriptional responses related to immune function and antioxidant responses in the gut of both naïve and A. suum-infected animals. A. suum infection and dietary PAC induced distinct changes in gut microbiota composition, primarily in the jejunum and colon, respectively. Notably, PAC consumption substantially increased the abundance of Limosilactobacillus reuteri. In vitro experiments with porcine macrophages and intestinal epithelial cells supported a role for both PAC polymers and PAC-derived microbial metabolites in regulating oxidative stress responses in host tissues. Thus, dietary PAC may have distinct beneficial effects on intestinal health during infection with mucosal pathogens, while having a limited activity to modulate naturally-induced type-2 pulmonary inflammation. Our results shed further light on the mechanisms underlying the health-promoting properties of PAC-rich foods, and may aid in the design of novel dietary supplements to regulate mucosal inflammatory responses in the gastrointestinal tract.


Assuntos
Ascaris suum , Proantocianidinas , Animais , Antioxidantes , Ascaris suum/fisiologia , Colo , Dieta , Inflamação , Pulmão , Proantocianidinas/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA