Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835381

RESUMO

Plant hemoglobins, often referred to as phytoglobins, play important roles in abiotic stress tolerance. Several essential small physiological metabolites can be bound to these heme proteins. In addition, phytoglobins can catalyze a range of different oxidative reactions in vivo. These proteins are often oligomeric, but the degree and relevance of subunit interactions are largely unknown. In this study, we delineate which residues are involved in dimer formation of a sugar beet phytoglobin type 1.2 (BvPgb1.2) using NMR relaxation experiments. E. coli cells harboring a phytoglobin expression vector were cultivated in isotope-labeled (2H, 13C and 15N) M9 medium. The triple-labeled protein was purified to homogeneity using two chromatographic steps. Two forms of BvPgb1.2 were examined, the oxy-form and the more stable cyanide-form. Using three-dimensional triple-resonance NMR experiments, sequence-specific assignments for CN-bound BvPgb1.2 were achieved for 137 backbone amide cross-peaks in the 1H-15N TROSY spectrum, which amounts to 83% of the total number of 165 expected cross-peaks. A large proportion of the non-assigned residues are located in α-helixes G and H, which are proposed to be involved in protein dimerization. Such knowledge around dimer formation will be instrumental for developing a better understanding of phytoglobins' roles in planta.


Assuntos
Beta vulgaris , Beta vulgaris/metabolismo , Escherichia coli/metabolismo , Hemoglobinas/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas de Plantas/química
2.
Biochem J ; 476(14): 2111-2125, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31285352

RESUMO

In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt 'open and closed forms', would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs' activity.


Assuntos
Beta vulgaris , Hemoglobinas , Óxido Nítrico , Nitritos , Nitrogênio , Proteínas de Plantas , Beta vulgaris/química , Beta vulgaris/genética , Beta vulgaris/metabolismo , Hemoglobinas/química , Hemoglobinas/genética , Hemoglobinas/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Nitritos/química , Nitritos/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Cell Physiol ; 55(4): 834-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486763

RESUMO

Biennial sugar beet (Beta vulgaris spp. vulgaris) is a Caryophyllidae that has adapted its growth cycle to the seasonal temperature and daylength variation of temperate regions. This is the first time a holistic study of the expression pattern of non-symbiotic hemoglobins (nsHbs) is being carried out in a member of this group and under two essential environmental conditions for flowering, namely vernalization and length of photoperiod. BvHb genes were identified by sequence homology searches against the latest draft of the sugar beet genome. Three nsHb genes (BvHb1.1, BvHb1.2 and BvHb2) and one truncated Hb gene (BvHb3) were found in the genome of sugar beet. Gene expression profiling of the nsHb genes was carried out by quantitative PCR in different organs and developmental stages, as well as during vernalization and under different photoperiods. BvHb1.1 and BvHb2 showed differential expression during vernalization as well as during long and short days. The high expression of BvHb2 indicates that it has an active role in the cell, maybe even taking over some BvHb1.2 functions, except during germination where BvHb1.2 together with BvHb1.1-both Class 1 nsHbs-are highly expressed. The unprecedented finding of a leader peptide at the N-terminus of BvHb1.1, for the first time in an nsHb from higher plants, together with its observed expression indicate that it may have a very specific role due to its suggested location in chloroplasts. Our findings open up new possibilities for research, breeding and engineering since Hbs could be more involved in plant development than previously was anticipated.


Assuntos
Beta vulgaris/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hemoglobinas/genética , Proteínas de Plantas/genética , Simbiose/genética , Sequência de Aminoácidos , Beta vulgaris/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Hemoglobinas/química , Hemoglobinas/metabolismo , Dados de Sequência Molecular , Fotoperíodo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transporte Proteico , Alinhamento de Sequência , Frações Subcelulares/metabolismo
4.
Anal Bioanal Chem ; 398(4): 1643-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20506016

RESUMO

In this study, direct electron transfer (ET) has been achieved between an immobilised non-symbiotic plant haemoglobin class II from Beta vulgaris (nsBvHb2) and three different screen-printed carbon electrodes based on graphite (SPCE), multi-walled carbon nanotubes (MWCNT-SPCE), and single-walled carbon nanotubes (SWCNT-SPCE) without the aid of any electron mediator. The nsBvHb2 modified electrodes were studied with cyclic voltammetry (CV) and also when placed in a wall-jet flow through cell for their electrocatalytic properties for reduction of H(2)O(2). The immobilised nsBvHb2 displayed a couple of stable and well-defined redox peaks with a formal potential (E°') of -33.5 mV (vs. Ag|AgCl|3 M KCl) at pH 7.4. The ET rate constant of nsBvHb2, k(s), was also determined at the surface of the three types of electrodes in phosphate buffer solution pH 7.4, and was found to be 0.50 s(-1) on SPCE, 2.78 s(-1) on MWCNT-SPCE and 4.06 s(-1) on SWCNT-SPCE, respectively. The average surface coverage of electrochemically active nsBvHb2 immobilised on the SPCEs, MWCNT-SPCEs and SWCNT-SPCEs obtained was 2.85 × 10(-10) mol cm(-2), 4.13 × 10(-10) mol cm(-2) and 5.20 × 10(-10) mol cm(-2). During the experiments the immobilised nsBvHb2 was stable and kept its electrochemical and catalytic activities. The nsBvHb2 modified electrodes also displayed an excellent response to the reduction of hydrogen peroxide (H(2)O(2)) with a linear detection range from 1 µM to 1000 µM on the surface of SPCEs, from 0.5 µM to 1000 µM on MWCNT-SPCEs, and from 0.1 µM to 1000 µM on SWCNT-SPCEs. The lower limit of detection was 0.8 µM, 0.4 µM and 0.1 µM at 3σ at the SPCEs, the MWCNT-SPCEs, and the SWCNT-SPCEs, respectively, and the apparent Michaelis-Menten constant, K(M)(app), for the H(2)O(2) sensors was estimated to be 0.32 mM , 0.29 mM and 0.27 mM, respectively.


Assuntos
Beta vulgaris/química , Técnicas Biossensoriais/métodos , Eletroquímica/instrumentação , Hemoglobinas/química , Proteínas de Plantas/química , Técnicas Biossensoriais/instrumentação , Carbono/química , Catálise , Eletroquímica/métodos , Eletrodos , Transporte de Elétrons , Peróxido de Hidrogênio/química , Cinética , Oxirredução , Proteínas de Plantas/fisiologia , Simbiose
5.
J Biotechnol ; 123(2): 137-48, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16466822

RESUMO

Production of high-amylose potato lines can be achieved by inhibition of two genes coding for starch branching enzymes. The use of antisense technology for gene inhibition have yielded a low frequency of high-amylose lines that mostly was correlated with high numbers of integrated T-DNA copies. To investigate whether the production of high-amylose lines could be improved, RNA interference was used for gene inhibition of the genes Sbe1 and Sbe2. Two constructs with 100 bp segments (pHAS2) or 200 bp segments (pHAS3) of both branching enzyme genes were cloned as inverted repeats controlled by a potato granule-bound starch synthase promoter. The construct pHAS3 was shown to be very efficient, yielding high-amylose quality in more than 50% of the transgenic lines. An antisense construct, included in the study as a comparator, resulted in only 3% of the transgenic lines being of high-amylose type. Noticeable was also that pHAS3 yielded low T-DNA copy inserts with an average of 83% of backbone-free transgenic lines being single copy events.


Assuntos
Amilose/biossíntese , Marcação de Genes/métodos , Melhoramento Genético/métodos , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amilose/genética , Solanum tuberosum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA